BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22182801)

  • 21. Introduction of constrained Trp analogs in RW9 modulates structure and partition in membrane models.
    Lozada C; Gonzalez S; Agniel R; Hindie M; Manciocchi L; Mazzanti L; Ha-Duong T; Santoro F; Carotenuto A; Ballet S; Lubin-Germain N
    Bioorg Chem; 2023 Oct; 139():106731. PubMed ID: 37480815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Membrane Crossing and Membranotropic Activity of Cell-Penetrating Peptides: Dangerous Liaisons?
    Walrant A; Cardon S; Burlina F; Sagan S
    Acc Chem Res; 2017 Dec; 50(12):2968-2975. PubMed ID: 29172443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell-penetrating peptides split into two groups based on modulation of intracellular calcium concentration.
    Lorents A; Kodavali PK; Oskolkov N; Langel Ü; Hällbrink M; Pooga M
    J Biol Chem; 2012 May; 287(20):16880-9. PubMed ID: 22437827
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Secondary conformational conversion is involved in glycosaminoglycans-mediated cellular uptake of the cationic cell-penetrating peptide PACAP.
    Tchoumi Neree A; Nguyen PT; Chatenet D; Fournier A; Bourgault S
    FEBS Lett; 2014 Dec; 588(24):4590-6. PubMed ID: 25447531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell penetration: scope and limitations by the application of cell-penetrating peptides.
    Reissmann S
    J Pept Sci; 2014 Oct; 20(10):760-84. PubMed ID: 25112216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides.
    Mäger I; Langel K; Lehto T; Eiríksdóttir E; Langel U
    Biochim Biophys Acta; 2012 Mar; 1818(3):502-11. PubMed ID: 22155257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular Uptake of Cell-Penetrating Peptides Activated by Amphiphilic p-Sulfonatocalix[4]arenes.
    Huang C; Liu YC; Oh H; Guo DS; Nau WM; Hennig A
    Chemistry; 2024 May; 30(28):e202400174. PubMed ID: 38456376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced cellular internalization of CdTe quantum dots mediated by arginine- and tryptophan-rich cell-penetrating peptides as efficient carriers.
    Farkhani SM; Johari-Ahar M; Zakeri-Milani P; Shahbazi Mojarrad J; Valizadeh H
    Artif Cells Nanomed Biotechnol; 2016 Sep; 44(6):1424-8. PubMed ID: 25884240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studies of membranotropic and fusogenic activity of two putative HCV fusion peptides.
    Gonzalez S; Gallier F; Kellouche S; Carreiras F; Novellino E; Carotenuto A; Chassaing G; Rovero P; Uziel J; Lubin-Germain N
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):50-61. PubMed ID: 30343120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell-Penetrating Peptides: Design Strategies beyond Primary Structure and Amphipathicity.
    Kalafatovic D; Giralt E
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29117144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insight into the role of physicochemical parameters in a novel series of amphipathic peptides for efficient DNA delivery.
    Sharma R; Shivpuri S; Anand A; Kulshreshtha A; Ganguli M
    Mol Pharm; 2013 Jul; 10(7):2588-600. PubMed ID: 23725377
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell-penetrating peptides derived from
    Larabee JL; Hauck GD; Ballard JD
    J Biol Chem; 2018 Feb; 293(5):1810-1819. PubMed ID: 29247010
    [No Abstract]   [Full Text] [Related]  

  • 33. Identification and characterization of novel protein-derived arginine-rich cell-penetrating peptides.
    Gautam A; Sharma M; Vir P; Chaudhary K; Kapoor P; Kumar R; Nath SK; Raghava GP
    Eur J Pharm Biopharm; 2015 Jan; 89():93-106. PubMed ID: 25459448
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biophysical Insight on the Membrane Insertion of an Arginine-Rich Cell-Penetrating Peptide.
    Jobin ML; Vamparys L; Deniau R; Grélard A; Mackereth CD; Fuchs PFJ; Alves ID
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31505894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peptide internalization enabled by folding: triple helical cell-penetrating peptides.
    Shinde A; Feher KM; Hu C; Slowinska K
    J Pept Sci; 2015 Feb; 21(2):77-84. PubMed ID: 25524829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamics of lipid interactions with cell-penetrating peptides.
    Sauder R; Seelig J; Ziegler A
    Methods Mol Biol; 2011; 683():129-55. PubMed ID: 21053127
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Membrane interaction and perturbation mechanisms induced by two cationic cell penetrating peptides with distinct charge distribution.
    Alves ID; Goasdoué N; Correia I; Aubry S; Galanth C; Sagan S; Lavielle S; Chassaing G
    Biochim Biophys Acta; 2008; 1780(7-8):948-59. PubMed ID: 18498774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring novel and potent cell penetrating peptides in the proteome of SARS-COV-2 using bioinformatics approaches.
    Kardani K; Bolhassani A
    PLoS One; 2021; 16(2):e0247396. PubMed ID: 33606823
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Peptide-mediated protein delivery-which pathways are penetrable?
    Räägel H; Säälik P; Pooga M
    Biochim Biophys Acta; 2010 Dec; 1798(12):2240-8. PubMed ID: 20170627
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the importance of electrostatic interactions between cell penetrating peptides and membranes: a pathway toward tumor cell selectivity?
    Jobin ML; Alves ID
    Biochimie; 2014 Dec; 107 Pt A():154-9. PubMed ID: 25107405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.