These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 22182830)

  • 1. The relationship between proteome size, structural disorder and organism complexity.
    Schad E; Tompa P; Hegyi H
    Genome Biol; 2011 Dec; 12(12):R120. PubMed ID: 22182830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life.
    Xue B; Dunker AK; Uversky VN
    J Biomol Struct Dyn; 2012; 30(2):137-49. PubMed ID: 22702725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Projection of gene-protein networks to the functional space of the proteome and its application to analysis of organism complexity.
    Kanapin AA; Mulder N; Kuznetsov VA
    BMC Genomics; 2010 Feb; 11 Suppl 1(Suppl 1):S4. PubMed ID: 20158875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correcting for differential transcript coverage reveals a strong relationship between alternative splicing and organism complexity.
    Chen L; Bush SJ; Tovar-Corona JM; Castillo-Morales A; Urrutia AO
    Mol Biol Evol; 2014 Jun; 31(6):1402-13. PubMed ID: 24682283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The C- and G-value paradox with polyploidy, repeatomes, introns, phenomes and cell economy.
    Choi IY; Kwon EC; Kim NS
    Genes Genomics; 2020 Jul; 42(7):699-714. PubMed ID: 32445179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct types of disorder in the human proteome: functional implications for alternative splicing.
    Colak R; Kim T; Michaut M; Sun M; Irimia M; Bellay J; Myers CL; Blencowe BJ; Kim PM
    PLoS Comput Biol; 2013 Apr; 9(4):e1003030. PubMed ID: 23633940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unexpected features of the dark proteome.
    Perdigão N; Heinrich J; Stolte C; Sabir KS; Buckley MJ; Tabor B; Signal B; Gloss BS; Hammang CJ; Rost B; Schafferhans A; O'Donoghue SI
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15898-903. PubMed ID: 26578815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatics analysis of disordered proteins in prokaryotes.
    Pavlović-Lažetić GM; Mitić NS; Kovačević JJ; Obradović Z; Malkov SN; Beljanski MV
    BMC Bioinformatics; 2011 Mar; 12():66. PubMed ID: 21366926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-proteome tree of life suggests a deep burst of organism diversity.
    Choi J; Kim SH
    Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3678-3686. PubMed ID: 32019884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome.
    Gray MW; Burger G; Derelle R; Klimeš V; Leger MM; Sarrasin M; Vlček Č; Roger AJ; Eliáš M; Lang BF
    BMC Biol; 2020 Mar; 18(1):22. PubMed ID: 32122349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic disorder in pathogenic and non-pathogenic microbes: discovering and analyzing the unfoldomes of early-branching eukaryotes.
    Mohan A; Sullivan WJ; Radivojac P; Dunker AK; Uversky VN
    Mol Biosyst; 2008 Apr; 4(4):328-40. PubMed ID: 18354786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expansion of the eukaryotic proteome by alternative splicing.
    Nilsen TW; Graveley BR
    Nature; 2010 Jan; 463(7280):457-63. PubMed ID: 20110989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative splicing level related to intron size and organism complexity.
    Yang P; Wang D; Kang L
    BMC Genomics; 2021 Nov; 22(1):853. PubMed ID: 34819032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural disorder in eukaryotes.
    Pancsa R; Tompa P
    PLoS One; 2012; 7(4):e34687. PubMed ID: 22496841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative splicing and proteome diversity in plants: the tip of the iceberg has just emerged.
    Kazan K
    Trends Plant Sci; 2003 Oct; 8(10):468-71. PubMed ID: 14557042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative proteome-based guidelines for intrinsic disorder characterization.
    Vincent M; Whidden M; Schnell S
    Biophys Chem; 2016 Jun; 213():6-16. PubMed ID: 27085142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DescribePROT: database of amino acid-level protein structure and function predictions.
    Zhao B; Katuwawala A; Oldfield CJ; Dunker AK; Faraggi E; Gsponer J; Kloczkowski A; Malhis N; Mirdita M; Obradovic Z; Söding J; Steinegger M; Zhou Y; Kurgan L
    Nucleic Acids Res; 2021 Jan; 49(D1):D298-D308. PubMed ID: 33119734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for a Strong Correlation Between Transcription Factor Protein Disorder and Organismic Complexity.
    Yruela I; Oldfield CJ; Niklas KJ; Dunker AK
    Genome Biol Evol; 2017 May; 9(5):1248-1265. PubMed ID: 28430951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disordered nucleiome: Abundance of intrinsic disorder in the DNA- and RNA-binding proteins in 1121 species from Eukaryota, Bacteria and Archaea.
    Wang C; Uversky VN; Kurgan L
    Proteomics; 2016 May; 16(10):1486-98. PubMed ID: 27037624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binary classification of protein molecules into intrinsically disordered and ordered segments.
    Fukuchi S; Hosoda K; Homma K; Gojobori T; Nishikawa K
    BMC Struct Biol; 2011 Jun; 11():29. PubMed ID: 21693062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.