These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22183040)

  • 1. Do reactive oxygen species regulate skeletal muscle glucose uptake during contraction?
    Merry TL; McConell GK
    Exerc Sport Sci Rev; 2012 Apr; 40(2):102-5. PubMed ID: 22183040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal muscle glucose uptake during exercise: a focus on reactive oxygen species and nitric oxide signaling.
    Merry TL; McConell GK
    IUBMB Life; 2009 May; 61(5):479-84. PubMed ID: 19391163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal muscle glucose uptake during contraction is regulated by nitric oxide and ROS independently of AMPK.
    Merry TL; Steinberg GR; Lynch GS; McConell GK
    Am J Physiol Endocrinol Metab; 2010 Mar; 298(3):E577-85. PubMed ID: 20009026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle nitric oxide signaling and exercise: a focus on glucose metabolism.
    McConell GK; Rattigan S; Lee-Young RS; Wadley GD; Merry TL
    Am J Physiol Endocrinol Metab; 2012 Aug; 303(3):E301-7. PubMed ID: 22550064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of nitric oxide in skeletal muscle glucose uptake during exercise.
    Hong YH; Betik AC; McConell GK
    Exp Physiol; 2014 Dec; 99(12):1569-73. PubMed ID: 25192731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise-induced phospho-proteins in skeletal muscle.
    Deshmukh AS; Hawley JA; Zierath JR
    Int J Obes (Lond); 2008 Sep; 32 Suppl 4():S18-23. PubMed ID: 18719593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of glucose transport in skeletal muscle by reactive oxygen species.
    Katz A
    J Appl Physiol (1985); 2007 Apr; 102(4):1671-6. PubMed ID: 17082366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction.
    Jensen TE; Rose AJ; Jørgensen SB; Brandt N; Schjerling P; Wojtaszewski JF; Richter EA
    Am J Physiol Endocrinol Metab; 2007 May; 292(5):E1308-17. PubMed ID: 17213473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rac1--a novel regulator of contraction-stimulated glucose uptake in skeletal muscle.
    Sylow L; Møller LL; Kleinert M; Richter EA; Jensen TE
    Exp Physiol; 2014 Dec; 99(12):1574-80. PubMed ID: 25239922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential role of nitric oxide in contraction-stimulated glucose uptake and mitochondrial biogenesis in skeletal muscle.
    McConell GK; Wadley GD
    Clin Exp Pharmacol Physiol; 2008 Dec; 35(12):1488-92. PubMed ID: 18759853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose uptake during contraction in isolated skeletal muscles from neuronal nitric oxide synthase μ knockout mice.
    Hong YH; Frugier T; Zhang X; Murphy RM; Lynch GS; Betik AC; Rattigan S; McConell GK
    J Appl Physiol (1985); 2015 May; 118(9):1113-21. PubMed ID: 25749441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Downstream mechanisms of nitric oxide-mediated skeletal muscle glucose uptake during contraction.
    Merry TL; Lynch GS; McConell GK
    Am J Physiol Regul Integr Comp Physiol; 2010 Dec; 299(6):R1656-65. PubMed ID: 20943856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local nitric oxide synthase inhibition reduces skeletal muscle glucose uptake but not capillary blood flow during in situ muscle contraction in rats.
    Ross RM; Wadley GD; Clark MG; Rattigan S; McConell GK
    Diabetes; 2007 Dec; 56(12):2885-92. PubMed ID: 17881613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Akt2 in contraction-stimulated cell signaling and glucose uptake in skeletal muscle.
    Sakamoto K; Arnolds DE; Fujii N; Kramer HF; Hirshman MF; Goodyear LJ
    Am J Physiol Endocrinol Metab; 2006 Nov; 291(5):E1031-7. PubMed ID: 16803855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Many pathways are called! Many may be chosen!
    Balon TW
    J Physiol; 2006 Aug; 575(Pt 1):3. PubMed ID: 16809355
    [No Abstract]   [Full Text] [Related]  

  • 16. Fine-tuning metabolism--how products of contraction regulate skeletal muscle adaptation.
    Philp A; Baar K
    Am J Physiol Endocrinol Metab; 2012 Jun; 302(11):E1313-4. PubMed ID: 22436694
    [No Abstract]   [Full Text] [Related]  

  • 17. 5'-aminoimidazole-4-carboxyamide-ribonucleoside-activated glucose transport is not prevented by nitric oxide synthase inhibition in rat isolated skeletal muscle.
    Stephens TJ; Canny BJ; Snow RJ; McConell GK
    Clin Exp Pharmacol Physiol; 2004 Jul; 31(7):419-23. PubMed ID: 15236627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of glycolysis and expression of glucose metabolism-related genes by reactive oxygen species in contracting skeletal muscle cells.
    Pinheiro CH; Silveira LR; Nachbar RT; Vitzel KF; Curi R
    Free Radic Biol Med; 2010 Apr; 48(7):953-60. PubMed ID: 20080177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise signalling to glucose transport in skeletal muscle.
    Richter EA; Nielsen JN; Jørgensen SB; Frøsig C; Birk JB; Wojtaszewski JF
    Proc Nutr Soc; 2004 May; 63(2):211-6. PubMed ID: 15294032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calmodulin-binding domain of AS160 regulates contraction- but not insulin-stimulated glucose uptake in skeletal muscle.
    Kramer HF; Taylor EB; Witczak CA; Fujii N; Hirshman MF; Goodyear LJ
    Diabetes; 2007 Dec; 56(12):2854-62. PubMed ID: 17717281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.