BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22183295)

  • 21. The plant MITE mPing is mobilized in anther culture.
    Kikuchi K; Terauchi K; Wada M; Hirano HY
    Nature; 2003 Jan; 421(6919):167-70. PubMed ID: 12520303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large-scale characterization of Tos17 insertion sites in a rice T-DNA mutant library.
    Piffanelli P; Droc G; Mieulet D; Lanau N; Bès M; Bourgeois E; Rouvière C; Gavory F; Cruaud C; Ghesquière A; Guiderdoni E
    Plant Mol Biol; 2007 Nov; 65(5):587-601. PubMed ID: 17874225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent retrotransposon insertions are methylated and phylogenetically clustered in japonica rice (Oryza sativa spp. japonica).
    Vonholdt BM; Takuno S; Gaut BS
    Mol Biol Evol; 2012 Oct; 29(10):3193-203. PubMed ID: 22593226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular characterization of a rice mutator-phenotype derived from an incompatible cross-pollination reveals transgenerational mobilization of multiple transposable elements and extensive epigenetic instability.
    Wang H; Chai Y; Chu X; Zhao Y; Wu Y; Zhao J; Ngezahayo F; Xu C; Liu B
    BMC Plant Biol; 2009 May; 9():63. PubMed ID: 19476655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes.
    Witte CP; Le QH; Bureau T; Kumar A
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):13778-83. PubMed ID: 11717436
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High potential of a transposon mPing as a marker system in japonica x japonica cross in rice.
    Monden Y; Naito K; Okumoto Y; Saito H; Oki N; Tsukiyama T; Ideta O; Nakazaki T; Wessler SR; Tanisaka T
    DNA Res; 2009 Apr; 16(2):131-40. PubMed ID: 19270311
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A genome-wide view of miniature inverted-repeat transposable elements (MITEs) in rice, Oryza sativa ssp. japonica.
    Oki N; Yano K; Okumoto Y; Tsukiyama T; Teraishi M; Tanisaka T
    Genes Genet Syst; 2008 Aug; 83(4):321-9. PubMed ID: 18931457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression.
    Naito K; Zhang F; Tsukiyama T; Saito H; Hancock CN; Richardson AO; Okumoto Y; Tanisaka T; Wessler SR
    Nature; 2009 Oct; 461(7267):1130-4. PubMed ID: 19847266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An active DNA transposon family in rice.
    Jiang N; Bao Z; Zhang X; Hirochika H; Eddy SR; McCouch SR; Wessler SR
    Nature; 2003 Jan; 421(6919):163-7. PubMed ID: 12520302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Utilization of transposable element
    Yasuda K; Ito M; Sugita T; Tsukiyama T; Saito H; Naito K; Teraishi M; Tanisaka T; Okumoto Y
    Mol Breed; 2013; 32(3):505-516. PubMed ID: 24078785
    [TBL] [Abstract][Full Text] [Related]  

  • 31. mPing: The bursting transposon.
    Naito K; Monden Y; Yasuda K; Saito H; Okumoto Y
    Breed Sci; 2014 Jun; 64(2):109-14. PubMed ID: 25053919
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolutionary Epigenomics of Retrotransposon-Mediated Methylation Spreading in Rice.
    Choi JY; Purugganan MD
    Mol Biol Evol; 2018 Feb; 35(2):365-382. PubMed ID: 29126199
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes.
    Kashkush K; Khasdan V
    Genetics; 2007 Dec; 177(4):1975-85. PubMed ID: 18073417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diversity of the Ty-1 copia retrotransposon Tos17 in rice (Oryza sativa L.) and the AA genome of the Oryza genus.
    Petit J; Bourgeois E; Stenger W; Bès M; Droc G; Meynard D; Courtois B; Ghesquière A; Sabot F; Panaud O; Guiderdoni E
    Mol Genet Genomics; 2009 Dec; 282(6):633-52. PubMed ID: 19856189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nested insertions and accumulation of indels are negatively correlated with abundance of mutator-like transposable elements in maize and rice.
    Zhao D; Jiang N
    PLoS One; 2014; 9(1):e87069. PubMed ID: 24475224
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transposable elements generate population-specific insertional patterns and allelic variation in genes of wild emmer wheat (Triticum turgidum ssp. dicoccoides).
    Domb K; Keidar D; Yaakov B; Khasdan V; Kashkush K
    BMC Plant Biol; 2017 Oct; 17(1):175. PubMed ID: 29078757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sources and predictors of resolvable indel polymorphism assessed using rice as a model.
    Edwards JD; Lee VM; McCouch SR
    Mol Genet Genomics; 2004 Apr; 271(3):298-307. PubMed ID: 14758543
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transposition of the Tourist-MITE mPing in yeast: an assay that retains key features of catalysis by the class 2 PIF/Harbinger superfamily.
    Hancock CN; Zhang F; Wessler SR
    Mob DNA; 2010 Feb; 1(1):5. PubMed ID: 20226077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amplification dynamics of miniature inverted-repeat transposable elements and their impact on rice trait variability.
    Castanera R; Vendrell-Mir P; Bardil A; Carpentier MC; Panaud O; Casacuberta JM
    Plant J; 2021 Jul; 107(1):118-135. PubMed ID: 33866641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mobilization of a transposon in the rice genome.
    Nakazaki T; Okumoto Y; Horibata A; Yamahira S; Teraishi M; Nishida H; Inoue H; Tanisaka T
    Nature; 2003 Jan; 421(6919):170-2. PubMed ID: 12520304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.