These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 22183319)
21. A Re-Appraisal of Pathogenic Mechanisms Bridging Wet and Dry Age-Related Macular Degeneration Leads to Reconsider a Role for Phytochemicals. Pinelli R; Biagioni F; Limanaqi F; Bertelli M; Scaffidi E; Polzella M; Busceti CL; Fornai F Int J Mol Sci; 2020 Aug; 21(15):. PubMed ID: 32756487 [TBL] [Abstract][Full Text] [Related]
22. [The potential role of oxidative stress in the pathogenesis of the age-related macular degeneration (AMD)]. Drobek-Słowik M; Karczewicz D; Safranow K Postepy Hig Med Dosw (Online); 2007; 61():28-37. PubMed ID: 17245315 [TBL] [Abstract][Full Text] [Related]
23. Consequences of oxidative stress in age-related macular degeneration. Jarrett SG; Boulton ME Mol Aspects Med; 2012 Aug; 33(4):399-417. PubMed ID: 22510306 [TBL] [Abstract][Full Text] [Related]
24. A window to innate neuroimmunity: Toll-like receptor-mediated cell responses in the retina. Kleinman ME; Ambati J Adv Exp Med Biol; 2012; 723():3-9. PubMed ID: 22183308 [No Abstract] [Full Text] [Related]
25. Glycation-altered proteolysis as a pathobiologic mechanism that links dietary glycemic index, aging, and age-related disease (in nondiabetics). Uchiki T; Weikel KA; Jiao W; Shang F; Caceres A; Pawlak D; Handa JT; Brownlee M; Nagaraj R; Taylor A Aging Cell; 2012 Feb; 11(1):1-13. PubMed ID: 21967227 [TBL] [Abstract][Full Text] [Related]
26. Interrelation Between Oxidative Stress and Complement Activation in Models of Age-Related Macular Degeneration. Pujol-Lereis LM; Schäfer N; Kuhn LB; Rohrer B; Pauly D Adv Exp Med Biol; 2016; 854():87-93. PubMed ID: 26427398 [TBL] [Abstract][Full Text] [Related]
27. Loss of NRF-2 and PGC-1α genes leads to retinal pigment epithelium damage resembling dry age-related macular degeneration. Felszeghy S; Viiri J; Paterno JJ; Hyttinen JMT; Koskela A; Chen M; Leinonen H; Tanila H; Kivinen N; Koistinen A; Toropainen E; Amadio M; Smedowski A; Reinisalo M; Winiarczyk M; Mackiewicz J; Mutikainen M; Ruotsalainen AK; Kettunen M; Jokivarsi K; Sinha D; Kinnunen K; Petrovski G; Blasiak J; Bjørkøy G; Koskelainen A; Skottman H; Urtti A; Salminen A; Kannan R; Ferrington DA; Xu H; Levonen AL; Tavi P; Kauppinen A; Kaarniranta K Redox Biol; 2019 Jan; 20():1-12. PubMed ID: 30253279 [TBL] [Abstract][Full Text] [Related]
28. Peripheral retinal function in age-related macular degeneration. Lewis H; Straatsma BR; Foos RY Arch Ophthalmol; 1985 Nov; 103(11):1631. PubMed ID: 4062626 [No Abstract] [Full Text] [Related]
29. The 5HT1a receptor agonist 8-Oh DPAT induces protection from lipofuscin accumulation and oxidative stress in the retinal pigment epithelium. Thampi P; Rao HV; Mitter SK; Cai J; Mao H; Li H; Seo S; Qi X; Lewin AS; Romano C; Boulton ME PLoS One; 2012; 7(4):e34468. PubMed ID: 22509307 [TBL] [Abstract][Full Text] [Related]
30. A review: role of ultraviolet radiation in age-related macular degeneration. Chalam KV; Khetpal V; Rusovici R; Balaiya S Eye Contact Lens; 2011 Jul; 37(4):225-32. PubMed ID: 21646979 [TBL] [Abstract][Full Text] [Related]
31. Potential mechanisms behind the antioxidant actions of prolactin in the retina. Thébault S Exp Eye Res; 2017 Jul; 160():56-61. PubMed ID: 28456446 [TBL] [Abstract][Full Text] [Related]
32. P2X7-pannexin-1 and amyloid β-induced oxysterol input in human retinal cell: Role in age-related macular degeneration? Olivier E; Dutot M; Regazzetti A; Leguillier T; Dargère D; Auzeil N; Laprévote O; Rat P Biochimie; 2016 Aug; 127():70-8. PubMed ID: 27109381 [TBL] [Abstract][Full Text] [Related]
33. Apigenin Protects Mouse Retina against Oxidative Damage by Regulating the Nrf2 Pathway and Autophagy. Zhang Y; Yang Y; Yu H; Li M; Hang L; Xu X Oxid Med Cell Longev; 2020; 2020():9420704. PubMed ID: 32509154 [TBL] [Abstract][Full Text] [Related]
34. Zhang M; Chu Y; Mowery J; Konkel B; Galli S; Theos AC; Golestaneh N Dis Model Mech; 2018 Aug; 11(9):. PubMed ID: 29925537 [TBL] [Abstract][Full Text] [Related]
35. Autophagy of iron-binding proteins may contribute to the oxidative stress resistance of ARPE-19 cells. Karlsson M; Frennesson C; Gustafsson T; Brunk UT; Nilsson SE; Kurz T Exp Eye Res; 2013 Nov; 116():359-65. PubMed ID: 24416768 [TBL] [Abstract][Full Text] [Related]
36. Lipoprotein(A) with An Intact Lysine Binding Site Protects the Retina From an Age-Related Macular Degeneration Phenotype in Mice (An American Ophthalmological Society Thesis). Handa JT; Tagami M; Ebrahimi K; Leibundgut G; Janiak A; Witztum JL; Tsimikas S Trans Am Ophthalmol Soc; 2015; 113():T5. PubMed ID: 26538774 [TBL] [Abstract][Full Text] [Related]
37. Targeting age-related macular degeneration with Alzheimer's disease based immunotherapies: anti-amyloid-beta antibody attenuates pathologies in an age-related macular degeneration mouse model. Ding JD; Lin J; Mace BE; Herrmann R; Sullivan P; Bowes Rickman C Vision Res; 2008 Feb; 48(3):339-45. PubMed ID: 17888483 [TBL] [Abstract][Full Text] [Related]
38. Expression of genes for AhR and Nrf2 signal pathways in the retina of OXYS rats during the development of retinopathy and melatonin-induced changes in this process. Perepechaeva ML; Stefanova NA; Grishanova AY Bull Exp Biol Med; 2014 Aug; 157(4):424-9. PubMed ID: 25110076 [TBL] [Abstract][Full Text] [Related]
39. Elemental concentrations in Choroid-RPE and retina of human eyes with age-related macular degeneration. Aberami S; Nikhalashree S; Bharathselvi M; Biswas J; Sulochana KN; Coral K Exp Eye Res; 2019 Sep; 186():107718. PubMed ID: 31271759 [TBL] [Abstract][Full Text] [Related]
40. Cyclic intensive light exposure induces retinal lesions similar to age-related macular degeneration in APPswe/PS1 bigenic mice. Dong Z; Li J; Leng Y; Sun X; Hu H; He Y; Tan Z; Ge J BMC Neurosci; 2012 Mar; 13():34. PubMed ID: 22443196 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]