BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 22183380)

  • 1. Development of a cellular model of rod opsin retinitis pigmentosa.
    Adamowicz M; Song A; Wadsworth S; Scaria A; O'Riordan C
    Adv Exp Med Biol; 2012; 723():573-9. PubMed ID: 22183380
    [No Abstract]   [Full Text] [Related]  

  • 2. P23H opsin knock-in mice reveal a novel step in retinal rod disc morphogenesis.
    Sakami S; Kolesnikov AV; Kefalov VJ; Palczewski K
    Hum Mol Genet; 2014 Apr; 23(7):1723-41. PubMed ID: 24214395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacological manipulation of gain-of-function and dominant-negative mechanisms in rhodopsin retinitis pigmentosa.
    Mendes HF; Cheetham ME
    Hum Mol Genet; 2008 Oct; 17(19):3043-54. PubMed ID: 18635576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinoids assist the cellular folding of the autosomal dominant retinitis pigmentosa opsin mutant P23H.
    Noorwez SM; Malhotra R; McDowell JH; Smith KA; Krebs MP; Kaushal S
    J Biol Chem; 2004 Apr; 279(16):16278-84. PubMed ID: 14769795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form of autosomal dominant retinitis pigmentosa due to P23H opsin mutations.
    Sakami S; Maeda T; Bereta G; Okano K; Golczak M; Sumaroka A; Roman AJ; Cideciyan AV; Jacobson SG; Palczewski K
    J Biol Chem; 2011 Mar; 286(12):10551-67. PubMed ID: 21224384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inherent instability of the retinitis pigmentosa P23H mutant opsin.
    Chen Y; Jastrzebska B; Cao P; Zhang J; Wang B; Sun W; Yuan Y; Feng Z; Palczewski K
    J Biol Chem; 2014 Mar; 289(13):9288-303. PubMed ID: 24515108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hammerhead ribozymes designed to cleave all human rod opsin mRNAs which cause autosomal dominant retinitis pigmentosa.
    Sullivan JM; Pietras KM; Shin BJ; Misasi JN
    Mol Vis; 2002 Apr; 8():102-13. PubMed ID: 11961505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mice with a D190N mutation in the gene encoding rhodopsin: a model for human autosomal-dominant retinitis pigmentosa.
    Sancho-Pelluz J; Tosi J; Hsu CW; Lee F; Wolpert K; Tabacaru MR; Greenberg JP; Tsang SH; Lin CS
    Mol Med; 2012 May; 18(1):549-55. PubMed ID: 22252712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoreceptor rosettes in autosomal dominant retinitis pigmentosa with reduced penetrance.
    Tulvatana W; Adamian M; Berson EL; Dryja TP
    Arch Ophthalmol; 1999 Mar; 117(3):399-402. PubMed ID: 10088824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defective intracellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration.
    Colley NJ; Cassill JA; Baker EK; Zuker CS
    Proc Natl Acad Sci U S A; 1995 Mar; 92(7):3070-4. PubMed ID: 7708777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function in rhodopsin: correct folding and misfolding in two point mutants in the intradiscal domain of rhodopsin identified in retinitis pigmentosa.
    Liu X; Garriga P; Khorana HG
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4554-9. PubMed ID: 8643442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wild-type opsin does not aggregate with a misfolded opsin mutant.
    Gragg M; Kim TG; Howell S; Park PS
    Biochim Biophys Acta; 2016 Aug; 1858(8):1850-9. PubMed ID: 27117643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromenone derivatives as novel pharmacological chaperones for retinitis pigmentosa-linked rod opsin mutants.
    Ortega JT; McKee AG; Roushar FJ; Penn WD; Schlebach JP; Jastrzebska B
    Hum Mol Genet; 2022 Oct; 31(20):3439-3457. PubMed ID: 35642742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of rapamycin on the fate of P23H opsin associated with retinitis pigmentosa (an American Ophthalmological Society thesis).
    Kaushal S
    Trans Am Ophthalmol Soc; 2006; 104():517-29. PubMed ID: 17471359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defective trafficking of rhodopsin and its role in retinal degenerations.
    Hollingsworth TJ; Gross AK
    Int Rev Cell Mol Biol; 2012; 293():1-44. PubMed ID: 22251557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rod and cone opsin mislocalization in an autopsy eye from a carrier of X-linked retinitis pigmentosa with a Gly436Asp mutation in the RPGR gene.
    Adamian M; Pawlyk BS; Hong DH; Berson EL
    Am J Ophthalmol; 2006 Sep; 142(3):515-8. PubMed ID: 16935610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acuity recovery and cone pigment regeneration after a bleach in patients with retinitis pigmentosa and rhodopsin mutations.
    Sandberg MA; Pawlyk BS; Berson EL
    Invest Ophthalmol Vis Sci; 1999 Sep; 40(10):2457-61. PubMed ID: 10476820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new rhodopsin R135W mutation induces endoplasmic reticulum stress and apoptosis in retinal pigment epithelial cells.
    Yu Y; Xia X; Li H; Zhang Y; Zhou X; Jiang H
    J Cell Physiol; 2019 Aug; 234(8):14100-14108. PubMed ID: 30635925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms of rhodopsin retinitis pigmentosa and the efficacy of pharmacological rescue.
    Krebs MP; Holden DC; Joshi P; Clark CL; Lee AH; Kaushal S
    J Mol Biol; 2010 Feb; 395(5):1063-78. PubMed ID: 19913029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. S-opsin protein is incompletely modified during N-glycan processing in Rpe65(-/-) mice.
    Sato K; Nakazawa M; Takeuchi K; Mizukoshi S; Ishiguro S
    Exp Eye Res; 2010 Jul; 91(1):54-62. PubMed ID: 20398652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.