These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 22183527)
1. Analysis of protein binding sites by computational solvent mapping. Hall DR; Kozakov D; Vajda S Methods Mol Biol; 2012; 819():13-27. PubMed ID: 22183527 [TBL] [Abstract][Full Text] [Related]
2. Fragment-based identification of druggable 'hot spots' of proteins using Fourier domain correlation techniques. Brenke R; Kozakov D; Chuang GY; Beglov D; Hall D; Landon MR; Mattos C; Vajda S Bioinformatics; 2009 Mar; 25(5):621-7. PubMed ID: 19176554 [TBL] [Abstract][Full Text] [Related]
3. FTMAP: extended protein mapping with user-selected probe molecules. Ngan CH; Bohnuud T; Mottarella SE; Beglov D; Villar EA; Hall DR; Kozakov D; Vajda S Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W271-5. PubMed ID: 22589414 [TBL] [Abstract][Full Text] [Related]
4. The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Kozakov D; Grove LE; Hall DR; Bohnuud T; Mottarella SE; Luo L; Xia B; Beglov D; Vajda S Nat Protoc; 2015 May; 10(5):733-55. PubMed ID: 25855957 [TBL] [Abstract][Full Text] [Related]
5. FTFlex: accounting for binding site flexibility to improve fragment-based identification of druggable hot spots. Grove LE; Hall DR; Beglov D; Vajda S; Kozakov D Bioinformatics; 2013 May; 29(9):1218-9. PubMed ID: 23476022 [TBL] [Abstract][Full Text] [Related]
6. Exploring the binding site structure of the PPAR gamma ligand-binding domain by computational solvent mapping. Sheu SH; Kaya T; Waxman DJ; Vajda S Biochemistry; 2005 Feb; 44(4):1193-209. PubMed ID: 15667213 [TBL] [Abstract][Full Text] [Related]
7. Identification of substrate binding sites in enzymes by computational solvent mapping. Silberstein M; Dennis S; Brown L; Kortvelyesi T; Clodfelter K; Vajda S J Mol Biol; 2003 Oct; 332(5):1095-113. PubMed ID: 14499612 [TBL] [Abstract][Full Text] [Related]
8. Expanding FTMap for Fragment-Based Identification of Pharmacophore Regions in Ligand Binding Sites. Khan O; Jones G; Lazou M; Joseph-McCarthy D; Kozakov D; Beglov D; Vajda S J Chem Inf Model; 2024 Mar; 64(6):2084-2100. PubMed ID: 38456842 [TBL] [Abstract][Full Text] [Related]
9. EasyMIFS and SiteHound: a toolkit for the identification of ligand-binding sites in protein structures. Ghersi D; Sanchez R Bioinformatics; 2009 Dec; 25(23):3185-6. PubMed ID: 19789268 [TBL] [Abstract][Full Text] [Related]
10. MetaPocket: a meta approach to improve protein ligand binding site prediction. Huang B OMICS; 2009 Aug; 13(4):325-30. PubMed ID: 19645590 [TBL] [Abstract][Full Text] [Related]
11. Structural conservation of druggable hot spots in protein-protein interfaces. Kozakov D; Hall DR; Chuang GY; Cencic R; Brenke R; Grove LE; Beglov D; Pelletier J; Whitty A; Vajda S Proc Natl Acad Sci U S A; 2011 Aug; 108(33):13528-33. PubMed ID: 21808046 [TBL] [Abstract][Full Text] [Related]
12. APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility. Xia JF; Zhao XM; Song J; Huang DS BMC Bioinformatics; 2010 Apr; 11():174. PubMed ID: 20377884 [TBL] [Abstract][Full Text] [Related]
13. Robust identification of binding hot spots using continuum electrostatics: application to hen egg-white lysozyme. Hall DH; Grove LE; Yueh C; Ngan CH; Kozakov D; Vajda S J Am Chem Soc; 2011 Dec; 133(51):20668-71. PubMed ID: 22092261 [TBL] [Abstract][Full Text] [Related]
14. Testing the Coulomb/Accessible Surface Area solvent model for protein stability, ligand binding, and protein design. am Busch MS; Lopes A; Amara N; Bathelt C; Simonson T BMC Bioinformatics; 2008 Mar; 9():148. PubMed ID: 18366628 [TBL] [Abstract][Full Text] [Related]
15. Evidence of conformational selection driving the formation of ligand binding sites in protein-protein interfaces. Bohnuud T; Kozakov D; Vajda S PLoS Comput Biol; 2014 Oct; 10(10):e1003872. PubMed ID: 25275445 [TBL] [Abstract][Full Text] [Related]
17. Computational mapping identifies the binding sites of organic solvents on proteins. Dennis S; Kortvelyesi T; Vajda S Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4290-5. PubMed ID: 11904374 [TBL] [Abstract][Full Text] [Related]
18. Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling. Engelen S; Trojan LA; Sacquin-Mora S; Lavery R; Carbone A PLoS Comput Biol; 2009 Jan; 5(1):e1000267. PubMed ID: 19165315 [TBL] [Abstract][Full Text] [Related]
19. Computational solvent mapping reveals the importance of local conformational changes for broad substrate specificity in mammalian cytochromes P450. Clodfelter KH; Waxman DJ; Vajda S Biochemistry; 2006 Aug; 45(31):9393-407. PubMed ID: 16878974 [TBL] [Abstract][Full Text] [Related]
20. Computational design, construction, and characterization of a set of specificity determining residues in protein-protein interactions. Nagao C; Izako N; Soga S; Khan SH; Kawabata S; Shirai H; Mizuguchi K Proteins; 2012 Oct; 80(10):2426-36. PubMed ID: 22674858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]