BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 22183528)

  • 1. Evolutionary trace for prediction and redesign of protein functional sites.
    Wilkins A; Erdin S; Lua R; Lichtarge O
    Methods Mol Biol; 2012; 819():29-42. PubMed ID: 22183528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary trace annotation of protein function in the structural proteome.
    Erdin S; Ward RM; Venner E; Lichtarge O
    J Mol Biol; 2010 Mar; 396(5):1451-73. PubMed ID: 20036248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UET: a database of evolutionarily-predicted functional determinants of protein sequences that cluster as functional sites in protein structures.
    Lua RC; Wilson SJ; Konecki DM; Wilkins AD; Venner E; Morgan DH; Lichtarge O
    Nucleic Acids Res; 2016 Jan; 44(D1):D308-12. PubMed ID: 26590254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ET viewer: an application for predicting and visualizing functional sites in protein structures.
    Morgan DH; Kristensen DM; Mittelman D; Lichtarge O
    Bioinformatics; 2006 Aug; 22(16):2049-50. PubMed ID: 16809388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence and structure continuity of evolutionary importance improves protein functional site discovery and annotation.
    Wilkins AD; Lua R; Erdin S; Ward RM; Lichtarge O
    Protein Sci; 2010 Jul; 19(7):1296-311. PubMed ID: 20506260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary Trace Annotation Server: automated enzyme function prediction in protein structures using 3D templates.
    Ward RM; Venner E; Daines B; Murray S; Erdin S; Kristensen DM; Lichtarge O
    Bioinformatics; 2009 Jun; 25(11):1426-7. PubMed ID: 19307237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An accurate, sensitive, and scalable method to identify functional sites in protein structures.
    Yao H; Kristensen DM; Mihalek I; Sowa ME; Shaw C; Kimmel M; Kavraki L; Lichtarge O
    J Mol Biol; 2003 Feb; 326(1):255-61. PubMed ID: 12547207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution: a guide to perturb protein function and networks.
    Lichtarge O; Wilkins A
    Curr Opin Struct Biol; 2010 Jun; 20(3):351-9. PubMed ID: 20444593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PyETV: a PyMOL evolutionary trace viewer to analyze functional site predictions in protein complexes.
    Lua RC; Lichtarge O
    Bioinformatics; 2010 Dec; 26(23):2981-2. PubMed ID: 20929911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility.
    Xia JF; Zhao XM; Song J; Huang DS
    BMC Bioinformatics; 2010 Apr; 11():174. PubMed ID: 20377884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling.
    Engelen S; Trojan LA; Sacquin-Mora S; Lavery R; Carbone A
    PLoS Comput Biol; 2009 Jan; 5(1):e1000267. PubMed ID: 19165315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of amino acid positions specific for functional groups in a protein family based on local sequence similarity.
    Karasev DA; Veselovsky AV; Oparina NY; Filimonov DA; Sobolev BN
    J Mol Recognit; 2016 Apr; 29(4):159-69. PubMed ID: 26549790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlated evolutionary pressure at interacting transcription factors and DNA response elements can guide the rational engineering of DNA binding specificity.
    Raviscioni M; Gu P; Sattar M; Cooney AJ; Lichtarge O
    J Mol Biol; 2005 Jul; 350(3):402-15. PubMed ID: 15946684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlated positions in protein evolution and engineering.
    Franceus J; Verhaeghe T; Desmet T
    J Ind Microbiol Biotechnol; 2017 May; 44(4-5):687-695. PubMed ID: 27514664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. INTREPID: a web server for prediction of functionally important residues by evolutionary analysis.
    Sankararaman S; Kolaczkowski B; Sjölander K
    Nucleic Acids Res; 2009 Jul; 37(Web Server issue):W390-5. PubMed ID: 19443452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of protein evolution and their application to protein engineering.
    Glasner ME; Gerlt JA; Babbitt PC
    Adv Enzymol Relat Areas Mol Biol; 2007; 75():193-239, xii-xiii. PubMed ID: 17124868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence-based identification of interface residues by an integrative profile combining hydrophobic and evolutionary information.
    Chen P; Li J
    BMC Bioinformatics; 2010 Jul; 11():402. PubMed ID: 20667087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intramolecular allosteric communication in dopamine D2 receptor revealed by evolutionary amino acid covariation.
    Sung YM; Wilkins AD; Rodriguez GJ; Wensel TG; Lichtarge O
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3539-44. PubMed ID: 26979958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SMpred: a support vector machine approach to identify structural motifs in protein structure without using evolutionary information.
    Pugalenthi G; Kandaswamy KK; Suganthan PN; Sowdhamini R; Martinetz T; Kolatkar PR
    J Biomol Struct Dyn; 2010 Dec; 28(3):405-14. PubMed ID: 20919755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated structure-based prediction of functional sites in proteins: applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking.
    Aloy P; Querol E; Aviles FX; Sternberg MJ
    J Mol Biol; 2001 Aug; 311(2):395-408. PubMed ID: 11478868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.