These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22183539)

  • 1. AGGRESCAN: method, application, and perspectives for drug design.
    de Groot NS; Castillo V; Graña-Montes R; Ventura S
    Methods Mol Biol; 2012; 819():199-220. PubMed ID: 22183539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AGGRESCAN: a server for the prediction and evaluation of "hot spots" of aggregation in polypeptides.
    Conchillo-Solé O; de Groot NS; Avilés FX; Vendrell J; Daura X; Ventura S
    BMC Bioinformatics; 2007 Feb; 8():65. PubMed ID: 17324296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of the aggregation propensity of proteins from the primary sequence: aggregation properties of proteomes.
    Castillo V; Graña-Montes R; Sabate R; Ventura S
    Biotechnol J; 2011 Jun; 6(6):674-85. PubMed ID: 21538897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of "hot spots" of aggregation in disease-linked polypeptides.
    Sánchez de Groot N; Pallarés I; Avilés FX; Vendrell J; Ventura S
    BMC Struct Biol; 2005 Sep; 5():18. PubMed ID: 16197548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Zyggregator method for predicting protein aggregation propensities.
    Tartaglia GG; Vendruscolo M
    Chem Soc Rev; 2008 Jul; 37(7):1395-401. PubMed ID: 18568165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of the protein structural class by specific peptide frequencies.
    Costantini S; Facchiano AM
    Biochimie; 2009 Feb; 91(2):226-9. PubMed ID: 18957316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpreting the aggregation kinetics of amyloid peptides.
    Pellarin R; Caflisch A
    J Mol Biol; 2006 Jul; 360(4):882-92. PubMed ID: 16797587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences.
    Tartaglia GG; Cavalli A; Pellarin R; Caflisch A
    Protein Sci; 2005 Oct; 14(10):2723-34. PubMed ID: 16195556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information.
    Capriotti E; Calabrese R; Casadio R
    Bioinformatics; 2006 Nov; 22(22):2729-34. PubMed ID: 16895930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fast method to predict protein interaction sites from sequences.
    Gallet X; Charloteaux B; Thomas A; Brasseur R
    J Mol Biol; 2000 Sep; 302(4):917-26. PubMed ID: 10993732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid propensities for secondary structures are influenced by the protein structural class.
    Costantini S; Colonna G; Facchiano AM
    Biochem Biophys Res Commun; 2006 Apr; 342(2):441-51. PubMed ID: 16487481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A strategy for designing inhibitors of alpha-synuclein aggregation and toxicity as a novel treatment for Parkinson's disease and related disorders.
    El-Agnaf OM; Paleologou KE; Greer B; Abogrein AM; King JE; Salem SA; Fullwood NJ; Benson FE; Hewitt R; Ford KJ; Martin FL; Harriott P; Cookson MR; Allsop D
    FASEB J; 2004 Aug; 18(11):1315-7. PubMed ID: 15180968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of aggregation-prone regions in structured proteins.
    Tartaglia GG; Pawar AP; Campioni S; Dobson CM; Chiti F; Vendruscolo M
    J Mol Biol; 2008 Jul; 380(2):425-36. PubMed ID: 18514226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational analysis of the S. cerevisiae proteome reveals the function and cellular localization of the least and most amyloidogenic proteins.
    Tartaglia GG; Caflisch A
    Proteins; 2007 Jul; 68(1):273-8. PubMed ID: 17407164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins.
    Fernandez-Escamilla AM; Rousseau F; Schymkowitz J; Serrano L
    Nat Biotechnol; 2004 Oct; 22(10):1302-6. PubMed ID: 15361882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational prediction and redesign of aberrant protein oligomerization.
    Santos J; Iglesias V; Ventura S
    Prog Mol Biol Transl Sci; 2020; 169():43-83. PubMed ID: 31952691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregation propensity of the human proteome.
    Monsellier E; Ramazzotti M; Taddei N; Chiti F
    PLoS Comput Biol; 2008 Oct; 4(10):e1000199. PubMed ID: 18927604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NdPASA: a novel pairwise protein sequence alignment algorithm that incorporates neighbor-dependent amino acid propensities.
    Wang J; Feng JA
    Proteins; 2005 Feb; 58(3):628-37. PubMed ID: 15616964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.