These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22183659)

  • 1. Targeted gene replacement in fungi using a split-marker approach.
    Goswami RS
    Methods Mol Biol; 2012; 835():255-69. PubMed ID: 22183659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directional ligation of long-flanking homology regions to selection cassettes for efficient targeted gene-disruption in Candida albicans.
    Taneja V; Paul S; Ganesan K
    FEMS Yeast Res; 2004 Sep; 4(8):841-7. PubMed ID: 15450191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi.
    Yu JH; Hamari Z; Han KH; Seo JA; Reyes-Domínguez Y; Scazzocchio C
    Fungal Genet Biol; 2004 Nov; 41(11):973-81. PubMed ID: 15465386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protoplast transformation of filamentous fungi.
    Turgeon BG; Condon B; Liu J; Zhang N
    Methods Mol Biol; 2010; 638():3-19. PubMed ID: 20238257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene-specific disruption in the filamentous fungus Cercospora nicotianae using a split-marker approach.
    You BJ; Lee MH; Chung KR
    Arch Microbiol; 2009 Jul; 191(7):615-22. PubMed ID: 19506835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New modules for PCR-based gene targeting in Candida albicans: rapid and efficient gene targeting using 100 bp of flanking homology region.
    Gola S; Martin R; Walther A; Dünkler A; Wendland J
    Yeast; 2003 Dec; 20(16):1339-47. PubMed ID: 14663826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PCR-based gene targeting in the filamentous fungus Ashbya gossypii.
    Wendland J; Ayad-Durieux Y; Knechtle P; Rebischung C; Philippsen P
    Gene; 2000 Jan; 242(1-2):381-91. PubMed ID: 10721732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonhomologous end-joining deficiency allows large chromosomal deletions to be produced by replacement-type recombination in Aspergillus oryzae.
    Takahashi T; Jin FJ; Koyama Y
    Fungal Genet Biol; 2009 Nov; 46(11):815-24. PubMed ID: 19654050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient disruption of non-homologous end-joining facilitates targeted genome manipulations in the filamentous fungus Aspergillus nidulans.
    Nielsen JB; Nielsen ML; Mortensen UH
    Fungal Genet Biol; 2008 Mar; 45(3):165-70. PubMed ID: 17703973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The actin gene promoter-driven bar as a dominant selectable marker for nuclear transformation of Dunaliella salina.
    Jiang GZ; Lü YM; Niu XL; Xue LX
    Yi Chuan Xue Bao; 2005 Apr; 32(4):424-33. PubMed ID: 16011035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The size and ratio of homologous sequence to non-homologous sequence in gene disruption cassette influences the gene targeting efficiency in Beauveria bassiana.
    Ma JC; Zhou Q; Zhou YH; Liao XG; Zhang YJ; Jin D; Pei Y
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):891-8. PubMed ID: 19148636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient PCR-based gene targeting with a recyclable marker for Aspergillus nidulans.
    Nielsen ML; Albertsen L; Lettier G; Nielsen JB; Mortensen UH
    Fungal Genet Biol; 2006 Jan; 43(1):54-64. PubMed ID: 16289954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agrobacterium-mediated transformation leads to improved gene replacement efficiency in Aspergillus awamori.
    Michielse CB; Arentshorst M; Ram AF; van den Hondel CA
    Fungal Genet Biol; 2005 Jan; 42(1):9-19. PubMed ID: 15588992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for making directed changes to the Fusarium graminearum genome without leaving markers or other extraneous DNA.
    Watson RJ; Wang S
    Fungal Genet Biol; 2012 Jul; 49(7):556-66. PubMed ID: 22664277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One step construction of Agrobacterium-Recombination-ready-plasmids (OSCAR), an efficient and robust tool for ATMT based gene deletion construction in fungi.
    Paz Z; García-Pedrajas MD; Andrews DL; Klosterman SJ; Baeza-Montañez L; Gold SE
    Fungal Genet Biol; 2011 Jul; 48(7):677-84. PubMed ID: 21362493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted gene replacement in fungal pathogens via Agrobacterium tumefaciens- mediated transformation.
    Frandsen RJ; Frandsen M; Giese H
    Methods Mol Biol; 2012; 835():17-45. PubMed ID: 22183645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recombinant DNA in filamentous fungi: progress and prospects.
    Rambosek J; Leach J
    Crit Rev Biotechnol; 1987; 6(4):357-93. PubMed ID: 3333340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PCR-based gene targeting in Candida albicans.
    Walther A; Wendland J
    Nat Protoc; 2008; 3(9):1414-21. PubMed ID: 18772868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning of glyceraldehyde-3-phosphate dehydrogenase gene and use of the gpd promoter for transformation in Flammulina velutipes.
    Kuo CY; Chou SY; Huang CT
    Appl Microbiol Biotechnol; 2004 Oct; 65(5):593-9. PubMed ID: 15168094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation.
    Frandsen RJ
    J Microbiol Methods; 2011 Dec; 87(3):247-62. PubMed ID: 21951772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.