These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 22183928)

  • 1. Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy.
    Lin H; Centeno SP; Su L; Kenens B; Rocha S; Sliwa M; Hofkens J; Uji-i H
    Chemphyschem; 2012 Mar; 13(4):973-81. PubMed ID: 22183928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-enhanced spectra on D-gluconic acid coated silver nanoparticles.
    Osorio-Román IO; Ortega-Vásquez V; Vargas C V; Aroca RF
    Appl Spectrosc; 2011 Aug; 65(8):838-43. PubMed ID: 21819772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of surface-enhanced Raman scattering and surface-enhanced fluorescence using a single and a double layer gold nanostructure.
    Hossain MK; Huang GG; Kaneko T; Ozaki Y
    Phys Chem Chem Phys; 2009 Sep; 11(34):7484-90. PubMed ID: 19690723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advancements in optical DNA biosensors: exploiting the plasmonic effects of metal nanoparticles.
    Peng HI; Miller BL
    Analyst; 2011 Feb; 136(3):436-47. PubMed ID: 21049107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced molecular fluorescence near thick Ag island film of large pseudotabular nanoparticles.
    Kawasaki M; Mine S
    J Phys Chem B; 2005 Sep; 109(36):17254-61. PubMed ID: 16853202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement.
    Zhang L; Lang X; Hirata A; Chen M
    ACS Nano; 2011 Jun; 5(6):4407-13. PubMed ID: 21627303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-enhanced fluorescence from silver fractallike nanostructures decorated with silver nanoparticles.
    Dong J; Zheng H; Li X; Yan X; sun Y; Zhang Z
    Appl Opt; 2011 Nov; 50(31):G123-6. PubMed ID: 22086036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonics-based spatially activated light microscopy for super-resolution imaging of molecular fluorescence.
    Kim K; Oh Y; Lee W; Kim D
    Opt Lett; 2010 Oct; 35(20):3501-3. PubMed ID: 20967113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolution enhancement of random adsorbed single-molecule localization based on surface plasmon resonance illumination.
    Zhai X; Sun Y; Wu D
    Opt Lett; 2011 Nov; 36(21):4242-4. PubMed ID: 22048378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super-resolution optical measurement of nanoscale photoacid distribution in lithographic materials.
    Berro AJ; Berglund AJ; Carmichael PT; Kim JS; Liddle JA
    ACS Nano; 2012 Nov; 6(11):9496-502. PubMed ID: 23102414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring copper nanostructures as highly uniform and reproducible substrates for plasmon-enhanced fluorescence.
    Volpati D; Spada ER; Plá Cid CC; Sartorelli ML; Aroca RF; Constantino CJ
    Analyst; 2015 Jan; 140(2):476-82. PubMed ID: 25416536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoactivated localization microscopy (PALM): an optical technique for achieving ~10-nm resolution.
    Zhong H
    Cold Spring Harb Protoc; 2010 Dec; 2010(12):pdb.top91. PubMed ID: 21123432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregates.
    Shegai T; Brian B; Miljković VD; Käll M
    ACS Nano; 2011 Mar; 5(3):2036-41. PubMed ID: 21323329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering.
    Cade NI; Ritman-Meer T; Kwaka K; Richards D
    Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation.
    Zhang P; Lee S; Yu H; Fang N; Kang SH
    Sci Rep; 2015 Jun; 5():11447. PubMed ID: 26074302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sample drift correction in 3D fluorescence photoactivation localization microscopy.
    Mlodzianoski MJ; Schreiner JM; Callahan SP; Smolková K; Dlasková A; Santorová J; Ježek P; Bewersdorf J
    Opt Express; 2011 Aug; 19(16):15009-19. PubMed ID: 21934862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super-resolution Localization and Defocused Fluorescence Microscopy on Resonantly Coupled Single-Molecule, Single-Nanorod Hybrids.
    Su L; Yuan H; Lu G; Rocha S; Orrit M; Hofkens J; Uji-i H
    ACS Nano; 2016 Feb; 10(2):2455-66. PubMed ID: 26815168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.