BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 22183957)

  • 21. Gas-phase fragmentation characteristics of benzyl-aminated lysyl-containing tryptic peptides.
    Simon ES; Papoulias PG; Andrews PC
    J Am Soc Mass Spectrom; 2010 Sep; 21(9):1624-32. PubMed ID: 20471281
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radical a-ions in electron capture dissociation: on the origin of species.
    Zubarev RA; Good DM; Savitski MM
    J Am Soc Mass Spectrom; 2012 Jun; 23(6):1015-8. PubMed ID: 22528204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calculations of relative intensities of fragment ions in the MSMS spectra of a doubly charged penta-peptide.
    Pechan T; Gwaltney SR
    BMC Bioinformatics; 2012; 13 Suppl 15(Suppl 15):S13. PubMed ID: 23046347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of basic residue content on fragment ion peak intensities in low-energy collision-induced dissociation spectra of peptides.
    Tabb DL; Huang Y; Wysocki VH; Yates JR
    Anal Chem; 2004 Mar; 76(5):1243-8. PubMed ID: 14987077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Infrared spectroscopy of fragments from doubly protonated tryptic peptides.
    Bythell BJ; Erlekam U; Paizs B; Maître P
    Chemphyschem; 2009 Apr; 10(6):883-5. PubMed ID: 19253930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of the identity of Xaa on the fragmentation modes of doubly-protonated Ala-Ala-Xaa-Ala-Ala-Ala-Arg.
    Harrison AG
    J Am Soc Mass Spectrom; 2011 May; 22(5):906-11. PubMed ID: 21472525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determining Linear Free Energy Relationships in Peptide Fragmentation Using Derivatization and Targeted Mass Spectrometry.
    Shen Y; Nemati R; Wang L; Yao X
    Anal Chem; 2018 Feb; 90(3):1587-1594. PubMed ID: 29281784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gas-phase structure of amyloid-β (12-28) peptide investigated by infrared spectroscopy, electron capture dissociation and ion mobility mass spectrometry.
    Le TN; Poully JC; Lecomte F; Nieuwjaer N; Manil B; Desfrançois C; Chirot F; Lemoine J; Dugourd P; van der Rest G; Grégoire G
    J Am Soc Mass Spectrom; 2013 Dec; 24(12):1937-49. PubMed ID: 24043520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fragmentation Patterns and Mechanisms of Singly and Doubly Protonated Peptoids Studied by Collision Induced Dissociation.
    Ren J; Tian Y; Hossain E; Connolly MD
    J Am Soc Mass Spectrom; 2016 Apr; 27(4):646-61. PubMed ID: 26832347
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Charge-separation reactions of doubly-protonated peptides: effect of peptide chain length.
    Harrison AG
    J Am Soc Mass Spectrom; 2009 Oct; 20(10):1890-5. PubMed ID: 19651525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of organophosphorus compound adducts of serine proteases by liquid chromatography-tandem mass spectrometry.
    Tsuge K; Seto Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2002 Aug; 776(1):79-88. PubMed ID: 12127328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proton transfer reactions for improved peptide characterisation.
    Rožman M; Schneider A; Gaskell SJ
    J Mass Spectrom; 2011 Jun; 46(6):529-34. PubMed ID: 21630380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. N-Protonated Isomers and Coulombic Barriers to Dissociation of Doubly Protonated Ala
    Haeffner F; Irikura KK
    J Am Soc Mass Spectrom; 2017 Oct; 28(10):2170-2180. PubMed ID: 28699065
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron capture dissociation studies of the fragmentation patterns of doubly protonated and mixed protonated-sodiated peptoids.
    Bogdanov B; Zhao X; Robinson DB; Ren J
    J Am Soc Mass Spectrom; 2014 Jul; 25(7):1202-16. PubMed ID: 24845348
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of c1 fragment ions in collision-induced dissociation of glutamine-containing peptide ions: a tip for de novo sequencing.
    Lee YJ; Lee YM
    Rapid Commun Mass Spectrom; 2004; 18(18):2069-76. PubMed ID: 15378720
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Statistical and mechanistic approaches to understanding the gas-phase fragmentation behavior of methionine sulfoxide containing peptides.
    Reid GE; Roberts KD; Kapp EA; Simpson RI
    J Proteome Res; 2004; 3(4):751-9. PubMed ID: 15359728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of charge distribution on the discrepant MS/MS fragmentation of the native and oxidized FMRF: evidence for the mobile proton model.
    Zong W; Liu R; Sun F; Zhang P; Xu Q
    J Pept Sci; 2010 Dec; 16(12):687-92. PubMed ID: 20848642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of phosphorylation on the electron capture dissociation of peptide ions.
    Creese AJ; Cooper HJ
    J Am Soc Mass Spectrom; 2008 Sep; 19(9):1263-74. PubMed ID: 18585055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A unique approach to the mobile proton model: influence of charge distribution on peptide fragmentation.
    Sun F; Liu R; Zong W; Tian Y; Wang M; Zhang P
    J Phys Chem B; 2010 May; 114(19):6350-3. PubMed ID: 20415484
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mass spectrometry studies of the fragmentation patterns and mechanisms of protonated peptoids.
    Ren J; Tian Y; Hossain E; Ho JS; Mann YS; Zhang Y; Browne MD; Connolly MD; Zuckermann RN
    Biopolymers; 2020 Jul; 111(7):e23358. PubMed ID: 32533591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.