These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22184156)

  • 21. The coupled motion of the femur and patella during in vivo weightbearing knee flexion.
    Li G; Papannagari R; Nha KW; Defrate LE; Gill TJ; Rubash HE
    J Biomech Eng; 2007 Dec; 129(6):937-43. PubMed ID: 18067400
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accuracy of mobile biplane X-ray imaging in measuring 6-degree-of-freedom patellofemoral kinematics during overground gait.
    Gray HA; Guan S; Pandy MG
    J Biomech; 2017 May; 57():152-156. PubMed ID: 28454908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robot-aided in vitro measurement of patellar stability with consideration to the influence of muscle loading.
    Lorenz A; Bobrowitsch E; Wünschel M; Walter C; Wülker N; Leichtle UG
    Biomed Eng Online; 2015 Jul; 14():70. PubMed ID: 26201401
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The quantitative measurement of normal passive medial and lateral patellar motion limits.
    Skalley TC; Terry GC; Teitge RA
    Am J Sports Med; 1993; 21(5):728-32. PubMed ID: 8238716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Patellofemoral joint kinematics in individuals with and without patellofemoral pain syndrome.
    MacIntyre NJ; Hill NA; Fellows RA; Ellis RE; Wilson DR
    J Bone Joint Surg Am; 2006 Dec; 88(12):2596-605. PubMed ID: 17142409
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Active patellar tracking measurement: a novel device using ultrasound.
    Shih YF; Bull AM; McGregor AH; Amis AA
    Am J Sports Med; 2004; 32(5):1209-17. PubMed ID: 15262644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Patellar tracking during simulated quadriceps contraction.
    Brunet ME; Brinker MR; Cook SD; Christakis P; Fong B; Patron L; O'Connor DP
    Clin Orthop Relat Res; 2003 Sep; (414):266-75. PubMed ID: 12966302
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Subject-specific evaluation of patellofemoral joint biomechanics during functional activity.
    Akbarshahi M; Fernandez JW; Schache AG; Pandy MG
    Med Eng Phys; 2014 Sep; 36(9):1122-33. PubMed ID: 24998901
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo tracking of the human patella using cine phase contrast magnetic resonance imaging.
    Sheehan FT; Zajac FE; Drace JE
    J Biomech Eng; 1999 Dec; 121(6):650-6. PubMed ID: 10633267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo patellar tracking and patellofemoral cartilage contacts during dynamic stair ascending.
    Suzuki T; Hosseini A; Li JS; Gill TJ; Li G
    J Biomech; 2012 Sep; 45(14):2432-7. PubMed ID: 22840488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of coordinate system variation on in vivo patellofemoral kinematic measures.
    Kedgley AE; McWalter EJ; Wilson DR
    Knee; 2015 Mar; 22(2):88-94. PubMed ID: 25656245
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of patellar tracking in patients with suspected patellar malalignment: cine MR imaging vs arthroscopy.
    Brossmann J; Muhle C; Büll CC; Schröder C; Melchert UH; Zieplies J; Spielmann RP; Heller M
    AJR Am J Roentgenol; 1994 Feb; 162(2):361-7. PubMed ID: 8310928
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo and noninvasive six degrees of freedom patellar tracking during voluntary knee movement.
    Lin F; Makhsous M; Chang AH; Hendrix RW; Zhang LQ
    Clin Biomech (Bristol, Avon); 2003 Jun; 18(5):401-9. PubMed ID: 12763436
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of component placement on knee kinetics after arthroplasty with an unconstrained prosthesis.
    Miller MC; Zhang AX; Petrella AJ; Berger RA; Rubash HE
    J Orthop Res; 2001 Jul; 19(4):614-20. PubMed ID: 11518270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative measurement of patellofemoral joint stability: force-displacement behavior of the human patella in vitro.
    Senavongse W; Farahmand F; Jones J; Andersen H; Bull AM; Amis AA
    J Orthop Res; 2003 Sep; 21(5):780-6. PubMed ID: 12919863
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A patella marker to improve hip and knee kinematics for models with functionally defined joint axes.
    Ries AJ; Schwartz MH
    Gait Posture; 2021 Jun; 87():43-48. PubMed ID: 33892390
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mobile-bearing total knee arthroplasty improves patellar tracking and patellofemoral contact stress: in vivo measurements in the same patients.
    Sawaguchi N; Majima T; Ishigaki T; Mori N; Terashima T; Minami A
    J Arthroplasty; 2010 Sep; 25(6):920-5. PubMed ID: 19775856
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The anterior cruciate ligament-deficient knee with varus alignment. An analysis of gait adaptations and dynamic joint loadings.
    Noyes FR; Schipplein OD; Andriacchi TP; Saddemi SR; Weise M
    Am J Sports Med; 1992; 20(6):707-16. PubMed ID: 1456365
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Patellofemoral kinematics during knee flexion-extension: an in vitro study.
    Amis AA; Senavongse W; Bull AM
    J Orthop Res; 2006 Dec; 24(12):2201-11. PubMed ID: 17004269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of patellar button placement and femoral component design on patellar tracking in total knee arthroplasty.
    Yoshii I; Whiteside LA; Anouchi YS
    Clin Orthop Relat Res; 1992 Feb; (275):211-9. PubMed ID: 1735216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.