These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 22184156)
41. Anterior cruciate ligament-deficient patients with passive knee joint laxity have a decreased range of anterior-posterior motion during active movements. Boeth H; Duda GN; Heller MO; Ehrig RM; Doyscher R; Jung T; Moewis P; Scheffler S; Taylor WR Am J Sports Med; 2013 May; 41(5):1051-7. PubMed ID: 23492824 [TBL] [Abstract][Full Text] [Related]
42. Ageing effects on knee and ankle joint angles at key events and phases of the gait cycle. Begg RK; Sparrow WA J Med Eng Technol; 2006; 30(6):382-9. PubMed ID: 17060166 [TBL] [Abstract][Full Text] [Related]
43. Comparison of stance phase knee joint angles and moments using two different surface marker representations of the proximal shank in walkers and runners. Petit DJ; Willson JD; Barrios JA J Appl Biomech; 2014 Feb; 30(1):173-8. PubMed ID: 24676525 [TBL] [Abstract][Full Text] [Related]
44. Patellofemoral design influences function following total knee arthroplasty. Andriacchi TP; Yoder D; Conley A; Rosenberg A; Sum J; Galante JO J Arthroplasty; 1997 Apr; 12(3):243-9. PubMed ID: 9113537 [TBL] [Abstract][Full Text] [Related]
45. Screw-Home Movement of the Tibiofemoral Joint during Normal Gait: Three-Dimensional Analysis. Kim HY; Kim KJ; Yang DS; Jeung SW; Choi HG; Choy WS Clin Orthop Surg; 2015 Sep; 7(3):303-9. PubMed ID: 26330951 [TBL] [Abstract][Full Text] [Related]
46. Patellar tracking patterns during active and passive knee extension: evaluation with motion-triggered cine MR imaging. Brossmann J; Muhle C; Schröder C; Melchert UH; Büll CC; Spielmann RP; Heller M Radiology; 1993 Apr; 187(1):205-12. PubMed ID: 8451415 [TBL] [Abstract][Full Text] [Related]
47. Patellofemoral kinematics during weight-bearing and non-weight-bearing knee extension in persons with lateral subluxation of the patella: a preliminary study. Powers CM; Ward SR; Fredericson M; Guillet M; Shellock FG J Orthop Sports Phys Ther; 2003 Nov; 33(11):677-85. PubMed ID: 14669963 [TBL] [Abstract][Full Text] [Related]
48. In vivo validation of patellofemoral kinematics during overground gait and stair ascent. Pitcairn S; Lesniak B; Anderst W Gait Posture; 2018 Jul; 64():191-197. PubMed ID: 29929162 [TBL] [Abstract][Full Text] [Related]
50. Sagittal plane movement at the tibiofemoral joint influences patellofemoral joint structure in healthy adult women. Teichtahl AJ; Jackson BD; Morris ME; Wluka AE; Baker R; Davis SR; Cicuttini FM Osteoarthritis Cartilage; 2006 Apr; 14(4):331-6. PubMed ID: 16427326 [TBL] [Abstract][Full Text] [Related]
51. Measurement of patellar tracking: assessment and analysis of the literature. Katchburian MV; Bull AM; Shih YF; Heatley FW; Amis AA Clin Orthop Relat Res; 2003 Jul; (412):241-59. PubMed ID: 12838076 [TBL] [Abstract][Full Text] [Related]
52. Transtibial versus anteromedial portal technique in single-bundle anterior cruciate ligament reconstruction: outcomes of knee joint kinematics during walking. Wang H; Fleischli JE; Zheng NN Am J Sports Med; 2013 Aug; 41(8):1847-56. PubMed ID: 23752955 [TBL] [Abstract][Full Text] [Related]
53. The influence of patella alta on patellofemoral joint stress during normal and fast walking. Ward SR; Powers CM Clin Biomech (Bristol, Avon); 2004 Dec; 19(10):1040-7. PubMed ID: 15531054 [TBL] [Abstract][Full Text] [Related]
54. Biomechanical effects of patellar positioning on intraoperative knee joint gap measurement in total knee arthroplasty. Gejo R; McGarry MH; Jun BJ; Hofer JK; Kimura T; Lee TQ Clin Biomech (Bristol, Avon); 2010 May; 25(4):352-8. PubMed ID: 20117864 [TBL] [Abstract][Full Text] [Related]
55. Reliability of sagittal plane hip, knee, and ankle joint angles from a single frame of video data using the GAITRite camera system. Ross SA; Rice C; Von Behren K; Meyer A; Alexander R; Murfin S Physiother Theory Pract; 2015 Jan; 31(1):53-60. PubMed ID: 25230893 [TBL] [Abstract][Full Text] [Related]
56. Simultaneous prediction of muscle and contact forces in the knee during gait. Lin YC; Walter JP; Banks SA; Pandy MG; Fregly BJ J Biomech; 2010 Mar; 43(5):945-52. PubMed ID: 19962703 [TBL] [Abstract][Full Text] [Related]
57. Quantitative gait analysis in patients with medial patellar instability following lateral retinacular release. Kramers-de Quervain IA; Biedert R; Stüssi E Knee Surg Sports Traumatol Arthrosc; 1997; 5(2):95-101. PubMed ID: 9228316 [TBL] [Abstract][Full Text] [Related]
58. Proximal placement of lateral thigh skin markers reduces soft tissue artefact during normal gait using the Conventional Gait Model. Cockcroft J; Louw Q; Baker R Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1497-504. PubMed ID: 26929983 [TBL] [Abstract][Full Text] [Related]
59. Electromyographic and kinematic analysis of graded treadmill walking and the implications for knee rehabilitation. Lange GW; Hintermeister RA; Schlegel T; Dillman CJ; Steadman JR J Orthop Sports Phys Ther; 1996 May; 23(5):294-301. PubMed ID: 8728527 [TBL] [Abstract][Full Text] [Related]
60. Gait evaluation of new powered knee-ankle-foot orthosis in able-bodied persons: a pilot study. Arazpour M; Ahmadi F; Bani MA; Hutchins SW; Bahramizadeh M; Ghomshe FT; Kashani RV Prosthet Orthot Int; 2014 Feb; 38(1):39-45. PubMed ID: 23660383 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]