These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22184262)

  • 1. The design and evaluation of a large-scale real-walking locomotion interface.
    Peck TC; Fuchs H; Whitton MC
    IEEE Trans Vis Comput Graph; 2012 Jul; 18(7):1053-67. PubMed ID: 22184262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Evaluation of Navigational Ability Comparing Redirected Free Exploration with Distractors to Walking-in-Place and Joystick Locomotion Interfaces.
    Peck TC; Fuchs H; Whitton MC
    Proc IEEE Virtual Real Conf; 2011 Mar; ():55-62. PubMed ID: 22297572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Redirection with Distractors: A Large-Scale-Real-Walking Locomotion Interface and its Effect on Navigation in Virtual Environments.
    Peck TC; Fuchs H; Whitton MC
    Proc IEEE Virtual Real Conf; 2010 Mar; 2010():35-38. PubMed ID: 25429369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishing the range of perceptually natural visual walking speeds for virtual walking-in-place locomotion.
    Nilsson NC; Serafin S; Nordahl R
    IEEE Trans Vis Comput Graph; 2014 Apr; 20(4):569-78. PubMed ID: 24650984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validating Simulation-Based Evaluation of Redirected Walking Systems.
    Azmandian M; Yahata R; Grechkin T; Thomas J; Rosenberg ES
    IEEE Trans Vis Comput Graph; 2022 May; 28(5):2288-2298. PubMed ID: 35175920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of reorientation techniques and distractors for walking in large virtual environments.
    Peck TC; Fuchs H; Whitton MC
    IEEE Trans Vis Comput Graph; 2009; 15(3):383-94. PubMed ID: 19282546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing four approaches to generalized redirected walking: simulation and live user data.
    Hodgson E; Bachmann E
    IEEE Trans Vis Comput Graph; 2013 Apr; 19(4):634-43. PubMed ID: 23428448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of detection thresholds for redirected walking techniques.
    Steinicke F; Bruder G; Jerald J; Frenz H; Lappe M
    IEEE Trans Vis Comput Graph; 2010; 16(1):17-27. PubMed ID: 19910658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redirecting walking and driving for natural navigation in immersive virtual environments.
    Bruder G; Interrante V; Phillips L; Steinicke F
    IEEE Trans Vis Comput Graph; 2012 Apr; 18(4):538-45. PubMed ID: 22402680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Velocity-dependent dynamic curvature gain for redirected walking.
    Neth CT; Souman JL; Engel D; Kloos U; Bülthoff HH; Mohler BJ
    IEEE Trans Vis Comput Graph; 2012 Jul; 18(7):1041-52. PubMed ID: 22577150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cognitive Resource Demands of Redirected Walking.
    Bruder G; Lubas P; Steinicke F
    IEEE Trans Vis Comput Graph; 2015 Apr; 21(4):539-44. PubMed ID: 26357104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaning-Based Interfaces Improve Simultaneous Locomotion and Object Interaction in VR Compared to the Handheld Controller.
    Hashemian AM; Adhikari A; Aguilar IA; Kruijff E; Heyde MV; Riecke BE
    IEEE Trans Vis Comput Graph; 2024 Aug; 30(8):4665-4682. PubMed ID: 37200130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive Redirection: A Context-Aware Redirected Walking Meta-Strategy.
    Azmandian M; Yahata R; Grechkin T; Rosenberg ES
    IEEE Trans Vis Comput Graph; 2022 May; 28(5):2277-2287. PubMed ID: 35175921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GUD WIP: Gait-Understanding-Driven Walking-In-Place.
    Wendt JD; Whitton MC; Brooks FP
    Proc IEEE Virtual Real Conf; 2010 Mar; 2010():51-58. PubMed ID: 25621313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic evaluation of virtual walking trajectories.
    Cirio G; Olivier AH; Marchal M; Pettré J
    IEEE Trans Vis Comput Graph; 2013 Apr; 19(4):671-80. PubMed ID: 23428452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of redirected walking algorithms in a constrained virtual world.
    Hodgson E; Bachmann E; Thrash T
    IEEE Trans Vis Comput Graph; 2014 Apr; 20(4):579-87. PubMed ID: 24650985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Walking in a cube: novel metaphors for safely navigating large virtual environments in restricted real workspaces.
    Cirio G; Vangorp P; Chapoulie E; Marchal M; Lécuyer A; Drettakis G
    IEEE Trans Vis Comput Graph; 2012 Apr; 18(4):546-54. PubMed ID: 22402681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing constrained-environment redirected walking instructions using search techniques.
    Zmuda MA; Wonser JL; Bachmann ER; Hodgson E
    IEEE Trans Vis Comput Graph; 2013 Nov; 19(11):1872-84. PubMed ID: 24029907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation and Evaluation of Walk-in-Place Using a Low-Cost Motion-Capture Device for Virtual Reality Applications.
    Shin R; Choi B; Choi SM; Lee S
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impossible spaces: maximizing natural walking in virtual environments with self-overlapping architecture.
    Suma EA; Lipps Z; Finkelstein S; Krum DM; Bolas M
    IEEE Trans Vis Comput Graph; 2012 Apr; 18(4):555-64. PubMed ID: 22402682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.