These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 22184334)

  • 1. Comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-bruijn-graph.
    Li Z; Chen Y; Mu D; Yuan J; Shi Y; Zhang H; Gan J; Li N; Hu X; Liu B; Yang B; Fan W
    Brief Funct Genomics; 2012 Jan; 11(1):25-37. PubMed ID: 22184334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid hybrid de novo assembly of a microbial genome using only short reads: Corynebacterium pseudotuberculosis I19 as a case study.
    Cerdeira LT; Carneiro AR; Ramos RT; de Almeida SS; D'Afonseca V; Schneider MP; Baumbach J; Tauch A; McCulloch JA; Azevedo VA; Silva A
    J Microbiol Methods; 2011 Aug; 86(2):218-23. PubMed ID: 21620904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly algorithms for next-generation sequencing data.
    Miller JR; Koren S; Sutton G
    Genomics; 2010 Jun; 95(6):315-27. PubMed ID: 20211242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient algorithm for DNA fragment assembly in MapReduce.
    Xu B; Gao J; Li C
    Biochem Biophys Res Commun; 2012 Sep; 426(3):395-8. PubMed ID: 22960169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Empirical evaluation of methods for
    Dida F; Yi G
    PeerJ Comput Sci; 2021; 7():e636. PubMed ID: 34307867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clover: a clustering-oriented de novo assembler for Illumina sequences.
    Hsieh MF; Lu CL; Tang CY
    BMC Bioinformatics; 2020 Nov; 21(1):528. PubMed ID: 33203354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of long error-prone reads using de Bruijn graphs.
    Lin Y; Yuan J; Kolmogorov M; Shen MW; Chaisson M; Pevzner PA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):E8396-E8405. PubMed ID: 27956617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fragment assembly string graph.
    Myers EW
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii79-85. PubMed ID: 16204131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NeatFreq: reference-free data reduction and coverage normalization for De Novo sequence assembly.
    McCorrison JM; Venepally P; Singh I; Fouts DE; Lasken RS; Methé BA
    BMC Bioinformatics; 2014 Nov; 15(1):357. PubMed ID: 25407910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo sequencing of plant genomes using second-generation technologies.
    Imelfort M; Edwards D
    Brief Bioinform; 2009 Nov; 10(6):609-18. PubMed ID: 19933209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Illumina error correction near highly repetitive DNA regions improves de novo genome assembly.
    Heydari M; Miclotte G; Van de Peer Y; Fostier J
    BMC Bioinformatics; 2019 Jun; 20(1):298. PubMed ID: 31159722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs.
    Kundeti VK; Rajasekaran S; Dinh H; Vaughn M; Thapar V
    BMC Bioinformatics; 2010 Nov; 11():560. PubMed ID: 21078174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survey of gene splicing algorithms based on reads.
    Si X; Wang Q; Zhang L; Wu R; Ma J
    Bioengineered; 2017 Nov; 8(6):750-758. PubMed ID: 28873323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of optimum sequencing depth especially for de novo genome assembly of small genomes using next generation sequencing data.
    Desai A; Marwah VS; Yadav A; Jha V; Dhaygude K; Bangar U; Kulkarni V; Jere A
    PLoS One; 2013; 8(4):e60204. PubMed ID: 23593174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fast hybrid short read fragment assembly algorithm.
    Schmidt B; Sinha R; Beresford-Smith B; Puglisi SJ
    Bioinformatics; 2009 Sep; 25(17):2279-80. PubMed ID: 19535537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome Assembly.
    Clum A
    Methods Mol Biol; 2018; 1775():141-153. PubMed ID: 29876816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The present and future of de novo whole-genome assembly.
    Sohn JI; Nam JW
    Brief Bioinform; 2018 Jan; 19(1):23-40. PubMed ID: 27742661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo assembly of bacterial genomes with repetitive DNA regions by dnaasm application.
    Kuśmirek W; Nowak R
    BMC Bioinformatics; 2018 Jul; 19(1):273. PubMed ID: 30021513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole genome assembly from 454 sequencing output via modified DNA graph concept.
    Blazewicz J; Bryja M; Figlerowicz M; Gawron P; Kasprzak M; Kirton E; Platt D; Przybytek J; Swiercz A; Szajkowski L
    Comput Biol Chem; 2009 Jun; 33(3):224-30. PubMed ID: 19477687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Omega: an overlap-graph de novo assembler for metagenomics.
    Haider B; Ahn TH; Bushnell B; Chai J; Copeland A; Pan C
    Bioinformatics; 2014 Oct; 30(19):2717-22. PubMed ID: 24947750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.