BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 22184460)

  • 1. Adaptation to tRNA acceptor stem structure by flexible adjustment in the catalytic domain of class I tRNA synthetases.
    Liu C; Sanders JM; Pascal JM; Hou YM
    RNA; 2012 Feb; 18(2):213-21. PubMed ID: 22184460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 2.0 A crystal structure of Thermus thermophilus methionyl-tRNA synthetase reveals two RNA-binding modules.
    Sugiura I; Nureki O; Ugaji-Yoshikawa Y; Kuwabara S; Shimada A; Tateno M; Lorber B; Giegé R; Moras D; Yokoyama S; Konno M
    Structure; 2000 Feb; 8(2):197-208. PubMed ID: 10673435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role for a conserved structural motif in assembly of a class I aminoacyl-tRNA synthetase active site.
    Casina VC; Lobashevsky AA; McKinney WE; Brown CL; Alexander RW
    Biochemistry; 2011 Feb; 50(5):763-9. PubMed ID: 21175197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Domain-domain communication for tRNA aminoacylation: the importance of covalent connectivity.
    Zhang CM; Hou YM
    Biochemistry; 2005 May; 44(19):7240-9. PubMed ID: 15882062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of a domain-spanning disulfide on aminoacyl-tRNA synthetase activity.
    Banerjee P; Warf MB; Alexander R
    Biochemistry; 2009 Oct; 48(42):10113-9. PubMed ID: 19772352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Domain-domain communication in aminoacyl-tRNA synthetases.
    Alexander RW; Schimmel P
    Prog Nucleic Acid Res Mol Biol; 2001; 69():317-49. PubMed ID: 11550797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct kinetic mechanisms of the two classes of Aminoacyl-tRNA synthetases.
    Zhang CM; Perona JJ; Ryu K; Francklyn C; Hou YM
    J Mol Biol; 2006 Aug; 361(2):300-11. PubMed ID: 16843487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-binding site in a class I tRNA synthetase localized to a cysteine cluster inserted into nucleotide-binding fold.
    Landro JA; Schimmel P
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2261-5. PubMed ID: 8460131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of methionine and formylation of initiator tRNA in initiation of protein synthesis in Escherichia coli.
    Varshney U; RajBhandary UL
    J Bacteriol; 1992 Dec; 174(23):7819-26. PubMed ID: 1447148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C-terminal peptide appendix in a class I tRNA synthetase needed for acceptor-helix contacts and microhelix aminoacylation.
    Kim S; Landro JA; Gale AJ; Schimmel P
    Biochemistry; 1993 Dec; 32(48):13026-31. PubMed ID: 8241156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A site in the dinucleotide-fold domain contributes to the accuracy of tRNA selection by Escherichia coli methionyl-tRNA synthetase.
    Kim HY; Pak M; Jakubowski H
    Mol Cells; 1998 Oct; 8(5):623-8. PubMed ID: 9856352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between the structure and function of Escherichia coli initiator tRNA.
    Dyson MR; Mandal N; RajBhandary UL
    Biochimie; 1993; 75(12):1051-60. PubMed ID: 7515283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crucial role of an idiosyncratic insertion in the Rossman fold of class 1 aminoacyl-tRNA synthetases: the case of methionyl-tRNA synthetase.
    Fourmy D; Mechulam Y; Blanquet S
    Biochemistry; 1995 Dec; 34(48):15681-8. PubMed ID: 7495798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arginine-395 is required for efficient in vivo and in vitro aminoacylation of tRNAs by Escherichia coli methionyl-tRNA synthetase.
    Ghosh G; Kim HY; Demaret JP; Brunie S; Schulman LH
    Biochemistry; 1991 Dec; 30(51):11767-74. PubMed ID: 1751493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structure-based multiple sequence alignment of all class I aminoacyl-tRNA synthetases.
    Landès C; Perona JJ; Brunie S; Rould MA; Zelwer C; Steitz TA; Risler JL
    Biochimie; 1995; 77(3):194-203. PubMed ID: 7647112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An important 2'-OH group for an RNA-protein interaction.
    Hou YM; Zhang X; Holland JA; Davis DR
    Nucleic Acids Res; 2001 Feb; 29(4):976-85. PubMed ID: 11160931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the tRNA anticodon recognition site of Escherichia coli methionyl-tRNA synthetase.
    Ghosh G; Pelka H; Schulman LH
    Biochemistry; 1990 Mar; 29(9):2220-5. PubMed ID: 2186810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of a 'minimal' glutaminyl-tRNA synthetase and the evolution of class I synthetases.
    Schwob E; Söll D
    EMBO J; 1993 Dec; 12(13):5201-8. PubMed ID: 7505222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.