These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 22184460)

  • 61. A continuous assay for monitoring the synthetic and proofreading activities of multiple aminoacyl-tRNA synthetases for high-throughput drug discovery.
    Grube CD; Roy H
    RNA Biol; 2018; 15(4-5):659-666. PubMed ID: 29168435
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Using molecular dynamics to map interaction networks in an aminoacyl-tRNA synthetase.
    Budiman ME; Knaggs MH; Fetrow JS; Alexander RW
    Proteins; 2007 Aug; 68(3):670-89. PubMed ID: 17510965
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Evidence for class-specific discrimination of a semiconserved base pair by tRNA synthetases.
    Liu H; Kessler J; Peterson R; Musier-Forsyth K
    Biochemistry; 1995 Aug; 34(30):9795-800. PubMed ID: 7542924
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Transition state stabilization by a phylogenetically conserved tyrosine residue in methionyl-tRNA synthetase.
    Ghosh G; Brunie S; Schulman LH
    J Biol Chem; 1991 Sep; 266(26):17136-41. PubMed ID: 1654323
    [TBL] [Abstract][Full Text] [Related]  

  • 65. An isolated class II aminoacyl-tRNA synthetase insertion domain is functional in amino acid editing.
    Wong FC; Beuning PJ; Silvers C; Musier-Forsyth K
    J Biol Chem; 2003 Dec; 278(52):52857-64. PubMed ID: 14530268
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Escherichia coli glutaminyl-tRNA synthetase: a single amino acid replacement relaxes rRNA specificity.
    Uemura H; Conley J; Yamao F; Rogers J; Söll D
    Protein Seq Data Anal; 1988; 1(6):479-85. PubMed ID: 2464170
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Species-specific microhelix aminoacylation by a eukaryotic pathogen tRNA synthetase dependent on a single base pair.
    Quinn CL; Tao N; Schimmel P
    Biochemistry; 1995 Oct; 34(39):12489-95. PubMed ID: 7547995
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cyclodipeptide synthases, a family of class-I aminoacyl-tRNA synthetase-like enzymes involved in non-ribosomal peptide synthesis.
    Sauguet L; Moutiez M; Li Y; Belin P; Seguin J; Le Du MH; Thai R; Masson C; Fonvielle M; Pernodet JL; Charbonnier JB; Gondry M
    Nucleic Acids Res; 2011 May; 39(10):4475-89. PubMed ID: 21296757
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Reversible inactivation of Escherichia coli methionyl-tRNA synthetase by covalent attachment of formylmethionine tRNA to the tRNA binding site with a cleavable cross-linker.
    Schulman LH; Valenzuela D; Pelka H
    Biochemistry; 1981 Oct; 20(21):6018-23. PubMed ID: 7030381
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cysteinyl-tRNA synthetase: determination of the last E. coli aminoacyl-tRNA synthetase primary structure.
    Eriani G; Dirheimer G; Gangloff J
    Nucleic Acids Res; 1991 Jan; 19(2):265-9. PubMed ID: 2014166
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Symmetric Assembly of a Decameric Subcomplex in Human Multi-tRNA Synthetase Complex Via Interactions between Glutathione Transferase-Homology Domains and Aspartyl-tRNA Synthetase.
    Cho HY; Lee HJ; Choi YS; Kim DK; Jin KS; Kim S; Kang BS
    J Mol Biol; 2019 Nov; 431(22):4475-4496. PubMed ID: 31473157
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Molecular determinants of the yeast Arc1p-aminoacyl-tRNA synthetase complex assembly.
    Karanasios E; Simader H; Panayotou G; Suck D; Simos G
    J Mol Biol; 2007 Dec; 374(4):1077-90. PubMed ID: 17976650
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Amino acid binding by the class I aminoacyl-tRNA synthetases: role for a conserved proline in the signature sequence.
    Burbaum JJ; Schimmel P
    Protein Sci; 1992 May; 1(5):575-81. PubMed ID: 1304356
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Alanyl-tRNA synthetase crystal structure and design for acceptor-stem recognition.
    Swairjo MA; Otero FJ; Yang XL; Lovato MA; Skene RJ; McRee DE; Ribas de Pouplana L; Schimmel P
    Mol Cell; 2004 Mar; 13(6):829-41. PubMed ID: 15053876
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Involvement of the size and sequence of the anticodon loop in tRNA recognition by mammalian and E. coli methionyl-tRNA synthetases.
    Meinnel T; Mechulam Y; Fayat G; Blanquet S
    Nucleic Acids Res; 1992 Sep; 20(18):4741-6. PubMed ID: 1408786
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Chemical modification and site-directed mutagenesis of the single cysteine in motif 3 of class II Escherichia coli prolyl-tRNA synthetase.
    Stehlin C; Heacock DH; Liu H; Musier-Forsyth K
    Biochemistry; 1997 Mar; 36(10):2932-8. PubMed ID: 9062123
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Coordination of tRNA synthetase active sites for chemical fidelity.
    Boniecki MT; Martinis SA
    J Biol Chem; 2012 Mar; 287(14):11285-9. PubMed ID: 22334703
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Structural basis of specific tRNA aminoacylation by a small in vitro selected ribozyme.
    Xiao H; Murakami H; Suga H; Ferré-D'Amaré AR
    Nature; 2008 Jul; 454(7202):358-61. PubMed ID: 18548004
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Aminoacylation of the anticodon stem by a tRNA-synthetase paralog: relic of an ancient code?
    Grosjean H; de Crécy-Lagard V; Björk GR
    Trends Biochem Sci; 2004 Oct; 29(10):519-22. PubMed ID: 15450604
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme.
    Ibba M; Hong KW; Sherman JM; Sever S; Söll D
    Proc Natl Acad Sci U S A; 1996 Jul; 93(14):6953-8. PubMed ID: 8692925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.