BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 22184655)

  • 1. Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots.
    Wu H; Chen C; Du J; Liu H; Cui Y; Zhang Y; He Y; Wang Y; Chu C; Feng Z; Li J; Ling HQ
    Plant Physiol; 2012 Feb; 158(2):790-800. PubMed ID: 22184655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis.
    Yuan Y; Wu H; Wang N; Li J; Zhao W; Du J; Wang D; Ling HQ
    Cell Res; 2008 Mar; 18(3):385-97. PubMed ID: 18268542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana.
    Wang N; Cui Y; Liu Y; Fan H; Du J; Huang Z; Yuan Y; Wu H; Ling HQ
    Mol Plant; 2013 Mar; 6(2):503-13. PubMed ID: 22983953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana--the role in zinc tolerance.
    Shanmugam V; Lo JC; Wu CL; Wang SL; Lai CC; Connolly EL; Huang JL; Yeh KC
    New Phytol; 2011 Apr; 190(1):125-137. PubMed ID: 21219335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. bHLH104 confers tolerance to cadmium stress in Arabidopsis thaliana.
    Yao X; Cai Y; Yu D; Liang G
    J Integr Plant Biol; 2018 Aug; 60(8):691-702. PubMed ID: 29667322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of function of Arabidopsis C-terminal domain phosphatase-like1 activates iron deficiency responses at the transcriptional level.
    Aksoy E; Jeong IS; Koiwa H
    Plant Physiol; 2013 Jan; 161(1):330-45. PubMed ID: 23144187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arabidopsis HY1 confers cadmium tolerance by decreasing nitric oxide production and improving iron homeostasis.
    Han B; Yang Z; Xie Y; Nie L; Cui J; Shen W
    Mol Plant; 2014 Feb; 7(2):388-403. PubMed ID: 23974911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The polish wheat (Triticum polonicum L.) TpSnRK2.10 and TpSnRK2.11 meditate the accumulation and the distribution of cd and Fe in transgenic Arabidopsis plants.
    Wang R; Wang C; Yao Q; Xiao X; Fan X; Sha L; Zeng J; Kang H; Zhang H; Zhou Y; Wang Y
    BMC Genomics; 2019 Mar; 20(1):210. PubMed ID: 30866815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide.
    Meiser J; Lingam S; Bauer P
    Plant Physiol; 2011 Dec; 157(4):2154-66. PubMed ID: 21972265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of DNA demethylation enhances plant tolerance to cadmium toxicity by improving iron nutrition.
    Fan SK; Ye JY; Zhang LL; Chen HS; Zhang HH; Zhu YX; Liu XX; Jin CW
    Plant Cell Environ; 2020 Jan; 43(1):275-291. PubMed ID: 31703150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Soybean Basic Helix-Loop-Helix Transcription Factor ORG3-Like Enhances Cadmium Tolerance via Increased Iron and Reduced Cadmium Uptake and Transport from Roots to Shoots.
    Xu Z; Liu X; He X; Xu L; Huang Y; Shao H; Zhang D; Tang B; Ma H
    Front Plant Sci; 2017; 8():1098. PubMed ID: 28702035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exogenous Melatonin Improves Plant Iron Deficiency Tolerance via Increased Accumulation of Polyamine-Mediated Nitric Oxide.
    Zhou C; Liu Z; Zhu L; Ma Z; Wang J; Zhu J
    Int J Mol Sci; 2016 Oct; 17(11):. PubMed ID: 27792144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signaling and iron-deficiency tolerance in Arabidopsis.
    Shanmugam V; Wang YW; Tsednee M; Karunakaran K; Yeh KC
    Plant J; 2015 Nov; 84(3):464-77. PubMed ID: 26333047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The basic helix-loop-helix transcription factor, bHLH11 functions in the iron-uptake system in Arabidopsis thaliana.
    Tanabe N; Noshi M; Mori D; Nozawa K; Tamoi M; Shigeoka S
    J Plant Res; 2019 Jan; 132(1):93-105. PubMed ID: 30417276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide analysis of gene expression profiling revealed that COP9 signalosome is essential for correct expression of Fe homeostasis genes in Arabidopsis.
    Eroglu S; Aksoy E
    Biometals; 2017 Oct; 30(5):685-698. PubMed ID: 28744713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron and FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR-dependent regulation of proteins and genes in Arabidopsis thaliana roots.
    Mai HJ; Lindermayr C; von Toerne C; Fink-Straube C; Durner J; Bauer P
    Proteomics; 2015 Sep; 15(17):3030-47. PubMed ID: 25951126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transcription factor MYC1 interacts with FIT to negatively regulate iron homeostasis in Arabidopsis thaliana.
    Song H; Geng Q; Wu X; Hu M; Ye M; Yu X; Chen Y; Xu J; Jiang L; Cao S
    Plant J; 2023 Apr; 114(1):193-208. PubMed ID: 36721966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ectopic expression of IMA small peptide genes confers tolerance to cadmium stress in Arabidopsis through activating the iron deficiency response.
    Meng X; Li W; Shen R; Lan P
    J Hazard Mater; 2022 Jan; 422():126913. PubMed ID: 34419841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of cadmium tolerance and accumulation by miR156 in Arabidopsis.
    Zhang L; Ding H; Jiang H; Wang H; Chen K; Duan J; Feng S; Wu G
    Chemosphere; 2020 Mar; 242():125168. PubMed ID: 31678850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ZINC FINGER OF ARABIDOPSIS THALIANA12 (ZAT12) Interacts with FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) Linking Iron Deficiency and Oxidative Stress Responses.
    Le CT; Brumbarova T; Ivanov R; Stoof C; Weber E; Mohrbacher J; Fink-Straube C; Bauer P
    Plant Physiol; 2016 Jan; 170(1):540-57. PubMed ID: 26556796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.