BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22185182)

  • 1. Effects of pH, chloride, and bicarbonate on Cu(I) oxidation kinetics at circumneutral pH.
    Yuan X; Pham AN; Xing G; Rose AL; Waite TD
    Environ Sci Technol; 2012 Feb; 46(3):1527-35. PubMed ID: 22185182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of Cu(I) in seawater at low oxygen concentrations.
    Pérez-Almeida N; González-Dávila M; Santana-Casiano JM; González AG; Suárez de Tangil M
    Environ Sci Technol; 2013 Feb; 47(3):1239-47. PubMed ID: 23259733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and mechanism of auto- and copper-catalyzed oxidation of 1,4-naphthohydroquinone.
    Yuan X; Miller CJ; Pham AN; Waite TD
    Free Radic Biol Med; 2014 Jun; 71():291-302. PubMed ID: 24681336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper-catalyzed hydroquinone oxidation and associated redox cycling of copper under conditions typical of natural saline waters.
    Yuan X; Pham AN; Miller CJ; Waite TD
    Environ Sci Technol; 2013 Aug; 47(15):8355-64. PubMed ID: 23796190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the kinetics of Fe(II) oxidation in the presence of citrate and salicylate in aqueous solutions at pH 6.0-8.0 and 25 degrees C.
    Pham AN; Waite TD
    J Phys Chem A; 2008 Jun; 112(24):5395-405. PubMed ID: 18507361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cu(II)-catalyzed oxidation of dopamine in aqueous solutions: mechanism and kinetics.
    Pham AN; Waite TD
    J Inorg Biochem; 2014 Aug; 137():74-84. PubMed ID: 24815905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of Cu(II) reduction by natural organic matter.
    Pham AN; Rose AL; Waite TD
    J Phys Chem A; 2012 Jun; 116(25):6590-9. PubMed ID: 22574891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper(I)-dioxygen reactivity of [(L)Cu(I)](+) (L = tris(2-pyridylmethyl)amine): kinetic/thermodynamic and spectroscopic studies concerning the formation of Cu-O2 and Cu2-O2 adducts as a function of solvent medium and 4-pyridyl ligand substituent variations.
    Zhang CX; Kaderli S; Costas M; Kim EI; Neuhold YM; Karlin KD; Zuberbühler AD
    Inorg Chem; 2003 Mar; 42(6):1807-24. PubMed ID: 12639113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radical production by hydrogen peroxide/bicarbonate and copper uptake in mammalian cells: modulation by Cu(II) complexes.
    do Lago LC; Matias AC; Nomura CS; Cerchiaro G
    J Inorg Biochem; 2011 Feb; 105(2):189-94. PubMed ID: 21194617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Albumin oxidation to diverse radicals by the peroxidase activity of Cu,Zn-superoxide dismutase in the presence of bicarbonate or nitrite: diffusible radicals produce cysteinyl and solvent-exposed and -unexposed tyrosyl radicals.
    Bonini MG; Fernandes DC; Augusto O
    Biochemistry; 2004 Jan; 43(2):344-51. PubMed ID: 14717588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of copper(II) by iron(II).
    Matocha CJ; Karathanasis AD; Rakshit S; Wagner KM
    J Environ Qual; 2005; 34(5):1539-46. PubMed ID: 16091606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of nanomolar levels of Fe(II) with oxygen in natural waters.
    Santana-Casiano JM; González-Dávila M; Millero FJ
    Environ Sci Technol; 2005 Apr; 39(7):2073-9. PubMed ID: 15871239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is there a redox reaction between Cu(II) and gallic acid?
    Severino JF; Goodman BA; Reichenauer TG; Pirker KF
    Free Radic Res; 2011 Feb; 45(2):115-24. PubMed ID: 20942570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of the oxidation of lactose by copper(II) complexed with bipyridyl in alkaline medium using chloro-complex of rhodium(III) in its nano-concentration range as homogeneous catalyst: a spectrophotometric study.
    Kumar Singh A; Singh M; Srivastava J; Rahmani S
    Carbohydr Res; 2012 Jun; 354():94-101. PubMed ID: 22541300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct nitric oxide detection in aqueous solution by copper(II) fluorescein complexes.
    Lim MH; Wong BA; Pitcock WH; Mokshagundam D; Baik MH; Lippard SJ
    J Am Chem Soc; 2006 Nov; 128(44):14364-73. PubMed ID: 17076510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser flash photolysis experiments on the effects of freezing and salt addition on intramolecular electron transfer within one-electron reduced ascorbate oxidase.
    Hazzard JT; Maritano S; Tollin G; Marchesini A
    Arch Biochem Biophys; 1997 Mar; 339(1):24-32. PubMed ID: 9056229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An accurate model for the determination of the kinetic coefficients of the copper-catalyzed oxidation of iodide by oxygen in an aqueous acidic medium.
    de Brauwere A; Baeyens W; De Ridder F; Elskens M
    Talanta; 2009 Dec; 80(2):1034-8. PubMed ID: 19836593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox reactions in the Fe-As-O2 system.
    Johnston RB; Singer PC
    Chemosphere; 2007 Sep; 69(4):517-25. PubMed ID: 17521697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process.
    Liao CH; Kang SF; Wu FA
    Chemosphere; 2001 Aug; 44(5):1193-200. PubMed ID: 11513408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.