BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 22185480)

  • 1. Hexahedral meshing of subject-specific anatomic structures using mapped building blocks.
    Kallemeyn NA; Natarajan A; Magnotta VA; Grosland NM
    Comput Methods Biomech Biomed Engin; 2013; 16(6):602-11. PubMed ID: 22185480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growing multiblock structures: a semi-automated approach to block placement for multiblock hexahedral meshing.
    Ramme AJ; Shivanna KH; Criswell AJ; Kallemeyn NA; Magnotta VA; Grosland NM
    Comput Methods Biomech Biomed Engin; 2012; 15(10):1043-52. PubMed ID: 21547780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated hexahedral meshing of anatomic structures using deformable registration.
    Grosland NM; Bafna R; Magnotta VA
    Comput Methods Biomech Biomed Engin; 2009 Feb; 12(1):35-43. PubMed ID: 18688764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gaussian curvature analysis allows for automatic block placement in multi-block hexahedral meshing.
    Ramme AJ; Shivanna KH; Magnotta VA; Grosland NM
    Comput Methods Biomech Biomed Engin; 2011 Oct; 14(10):893-904. PubMed ID: 20924860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-hexahedral structured meshing for image-based computational vascular modeling.
    De Santis G; De Beule M; Van Canneyt K; Segers P; Verdonck P; Verhegghe B
    Med Eng Phys; 2011 Dec; 33(10):1318-25. PubMed ID: 21763174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust automatic hexahedral cartilage meshing framework enables population-based computational studies of the knee.
    Gibbons KD; Malbouby V; Alvarez O; Fitzpatrick CK
    Front Bioeng Biotechnol; 2022; 10():1059003. PubMed ID: 36568304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphing the feature-based multi-blocks of normative/healthy vertebral geometries to scoliosis vertebral geometries: development of personalized finite element models.
    Hadagali P; Peters JR; Balasubramanian S
    Comput Methods Biomech Biomed Engin; 2018 Mar; 21(4):297-324. PubMed ID: 29528253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies.
    Viceconti M; Davinelli M; Taddei F; Cappello A
    J Biomech; 2004 Oct; 37(10):1597-605. PubMed ID: 15336935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patient-specific modelling of the foot: automated hexahedral meshing of the bones.
    Lievers WB; Kent RW
    Comput Methods Biomech Biomed Engin; 2013; 16(12):1287-97. PubMed ID: 22436002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Displacement-Based and Force-Based Mapped Meshing.
    Magnotta VA; Li W; Grosland NM
    Midas J; 2008 Aug; 2008():629. PubMed ID: 21552387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ia-FEMesh: anatomic FE models--a check of mesh accuracy and validity.
    Devries NA; Shivanna KH; Tadepalli SC; Magnotta VA; Grosland NM
    Iowa Orthop J; 2009; 29():48-54. PubMed ID: 19742085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An automatic robust meshing algorithm for soft tissue modeling.
    Seifert S; Boehler S; Sudra G; Dillmann R
    Stud Health Technol Inform; 2005; 111():443-6. PubMed ID: 15718775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A voxel-based finite element model for the prediction of bladder deformation.
    Chai X; van Herk M; Hulshof MC; Bel A
    Med Phys; 2012 Jan; 39(1):55-65. PubMed ID: 22225275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A set of mixed-elements patterns for domain boundary approximation in hexahedral meshes.
    Lobos C
    Stud Health Technol Inform; 2013; 184():268-72. PubMed ID: 23400168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hexahedral mesh generation via constrained quadrilateralization.
    Shang F; Gan Y; Guo Y
    PLoS One; 2017; 12(5):e0177603. PubMed ID: 28542355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mesh-matching algorithm: an automatic 3D mesh generator for finite element structures.
    Couteau B; Payan Y; Lavallée S
    J Biomech; 2000 Aug; 33(8):1005-9. PubMed ID: 10828331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation.
    Zhang X; Kim D; Shen S; Yuan P; Liu S; Tang Z; Zhang G; Zhou X; Gateno J; Liebschner MAK; Xia JJ
    Biomech Model Mechanobiol; 2018 Apr; 17(2):387-402. PubMed ID: 29027022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated subject-specific, hexahedral mesh generation via image registration.
    Ji S; Ford JC; Greenwald RM; Beckwith JG; Paulsen KD; Flashman LA; McAllister TW
    Finite Elem Anal Des; 2011 Oct; 47(10):1178-1185. PubMed ID: 21731153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new cortical thickness mapping method with application to an in vivo finite element model.
    Kim YH; Kim JE; Eberhardt AW
    Comput Methods Biomech Biomed Engin; 2014; 17(9):997-1001. PubMed ID: 23113651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study on different methods of automatic mesh generation of human femurs.
    Viceconti M; Bellingeri L; Cristofolini L; Toni A
    Med Eng Phys; 1998 Jan; 20(1):1-10. PubMed ID: 9664280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.