These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 22185486)

  • 1. Strain tunes proteolytic degradation and diffusive transport in fibrin networks.
    Adhikari AS; Mekhdjian AH; Dunn AR
    Biomacromolecules; 2012 Feb; 13(2):499-506. PubMed ID: 22185486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inherent fibrin fiber tension propels mechanisms of network clearance during fibrinolysis.
    Cone SJ; Fuquay AT; Litofsky JM; Dement TC; Carolan CA; Hudson NE
    Acta Biomater; 2020 Apr; 107():164-177. PubMed ID: 32105833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hindered dissolution of fibrin formed under mechanical stress.
    Varjú I; Sótonyi P; Machovich R; Szabó L; Tenekedjiev K; Silva MM; Longstaff C; Kolev K
    J Thromb Haemost; 2011 May; 9(5):979-86. PubMed ID: 21251205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow rate-modulated dissolution of fibrin with clot-embedded and circulating proteases.
    Komorowicz E; Kolev K; Léránt I; Machovich R
    Circ Res; 1998 Jun; 82(10):1102-8. PubMed ID: 9622163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmin-driven fibrinolysis in a quasi-two-dimensional nanoscale fibrin matrix.
    Feller T; Hársfalvi J; Csányi C; Kiss B; Kellermayer M
    J Struct Biol; 2018 Sep; 203(3):273-280. PubMed ID: 29859328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clot penetration and fibrin binding of amediplase,a chimeric plasminogen activator (K2 tu-PA).
    Rijken DC; Barrett-Bergshoeff MM; Jie AF; Criscuoli M; Sakharov DV
    Thromb Haemost; 2004 Jan; 91(1):52-60. PubMed ID: 14691568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibrinogen depletion after plasma-dilution: impairment of proteolytic resistance and reversal via clotting factor concentrates.
    He S; Johnsson H; Zabczyk M; Hultenby K; Wallén H; Blombäck M
    Thromb Haemost; 2014 Mar; 111(3):417-28. PubMed ID: 24196490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombinant fibrinogen reveals the differential roles of α- and γ-chain cross-linking and molecular heterogeneity in fibrin clot strain-stiffening.
    Piechocka IK; Kurniawan NA; Grimbergen J; Koopman J; Koenderink GH
    J Thromb Haemost; 2017 May; 15(5):938-949. PubMed ID: 28166607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fractal kinetic behavior of plasmin on the surface of fibrin meshwork.
    Varjú I; Tenekedjiev K; Keresztes Z; Pap AE; Szabó L; Thelwell C; Longstaff C; Machovich R; Kolev K
    Biochemistry; 2014 Oct; 53(40):6348-56. PubMed ID: 25222106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical determinants of fibrinolysis in single fibrin fibers.
    Bucay I; O'Brien ET; Wulfe SD; Superfine R; Wolberg AS; Falvo MR; Hudson NE
    PLoS One; 2015; 10(2):e0116350. PubMed ID: 25714359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coagulation factor XIIIa is inactivated by plasmin.
    Hur WS; Mazinani N; Lu XJ; Britton HM; Byrnes JR; Wolberg AS; Kastrup CJ
    Blood; 2015 Nov; 126(20):2329-37. PubMed ID: 26359437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of nascent cohesive fiber-fiber interactions to the non-linear elasticity of fibrin networks under tensile load.
    Britton S; Kim O; Pancaldi F; Xu Z; Litvinov RI; Weisel JW; Alber M
    Acta Biomater; 2019 Aug; 94():514-523. PubMed ID: 31152942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Role of the K4 and K5 plasmin heavy chain kringles in the fibrin clot structure destruction].
    Andrianov SI; Makogonenko EM; Kudinov SA
    Ukr Biokhim Zh (1978); 1992; 64(2):31-8. PubMed ID: 1413115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for the nonlinear mechanics of fibrin networks under compression.
    Kim OV; Litvinov RI; Weisel JW; Alber MS
    Biomaterials; 2014 Aug; 35(25):6739-49. PubMed ID: 24840618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporation of fragment X into fibrin clots renders them more susceptible to lysis by plasmin.
    Schaefer AV; Leslie BA; Rischke JA; Stafford AR; Fredenburgh JC; Weitz JI
    Biochemistry; 2006 Apr; 45(13):4257-65. PubMed ID: 16566600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of the protection of plasmin from antiplasmin inhibition within an intact fibrin clot during the course of clot lysis.
    Schneider M; Nesheim M
    J Biol Chem; 2004 Apr; 279(14):13333-9. PubMed ID: 14715655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational quiescence of ADAMTS-13 prevents proteolytic promiscuity.
    South K; Freitas MO; Lane DA
    J Thromb Haemost; 2016 Oct; 14(10):2011-2022. PubMed ID: 27514025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood clot contraction differentially modulates internal and external fibrinolysis.
    Tutwiler V; Peshkova AD; Le Minh G; Zaitsev S; Litvinov RI; Cines DB; Weisel JW
    J Thromb Haemost; 2019 Feb; 17(2):361-370. PubMed ID: 30582674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of fibrin degradation products on fibrinolytic process.
    Yatsenko TA; Rybachuk VM; Yusova OI; Kharchenko SM; Grinenko TV
    Ukr Biochem J; 2016; 88(2):16-24. PubMed ID: 29227597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced plasminogen binding and delayed activation render γ'-fibrin more resistant to lysis than γA-fibrin.
    Kim PY; Vu TT; Leslie BA; Stafford AR; Fredenburgh JC; Weitz JI
    J Biol Chem; 2014 Oct; 289(40):27494-503. PubMed ID: 25128532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.