BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 22185691)

  • 1. Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production.
    Yoshii H; Yoshii Y; Asai T; Furukawa T; Takaichi S; Fujibayashi Y
    Biochem Biophys Res Commun; 2012 Jan; 417(1):640-5. PubMed ID: 22185691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites.
    Sachindra NM; Sato E; Maeda H; Hosokawa M; Niwano Y; Kohno M; Miyashita K
    J Agric Food Chem; 2007 Oct; 55(21):8516-22. PubMed ID: 17894451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-photon induced luminescence, singlet oxygen generation, cellular uptake and photocytotoxic properties of amphiphilic Ru(II) polypyridyl-porphyrin conjugates as potential bifunctional photodynamic therapeutic agents.
    Zhang J; Wong KL; Wong WK; Mak NK; Kwong DW; Tam HL
    Org Biomol Chem; 2011 Sep; 9(17):6004-10. PubMed ID: 21748193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence.
    Young AJ; Frank HA
    J Photochem Photobiol B; 1996 Oct; 36(1):3-15. PubMed ID: 8988608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using the singlet oxygen scavenging property of carotenoid in photodynamic molecular beacons to minimize photodamage to non-targeted cells.
    Chen J; Jarvi M; Lo PC; Stefflova K; Wilson BC; Zheng G
    Photochem Photobiol Sci; 2007 Dec; 6(12):1311-7. PubMed ID: 18046487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison between sonodynamic effect and photodynamic effect with photosensitizers on free radical formation and cell killing.
    Hiraoka W; Honda H; Feril LB; Kudo N; Kondo T
    Ultrason Sonochem; 2006 Sep; 13(6):535-42. PubMed ID: 16325451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control and selectivity of photosensitized singlet oxygen production: challenges in complex biological systems.
    Cló E; Snyder JW; Ogilby PR; Gothelf KV
    Chembiochem; 2007 Mar; 8(5):475-81. PubMed ID: 17323398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ESR detection of 1O2 reveals enhanced redox activity in illuminated cell cultures.
    Lavi R; Sinyakov M; Samuni A; Shatz S; Friedmann H; Shainberg A; Breitbart H; Lubart R
    Free Radic Res; 2004 Sep; 38(9):893-902. PubMed ID: 15621706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-harvesting function of carotenoids in photo-synthesis: the roles of the newly found 1(1)Bu- state.
    Koyama Y; Rondonuwu FS; Fujii R; Watanabe Y
    Biopolymers; 2004 May-Jun 5; 74(1-2):2-18. PubMed ID: 15137086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosensitization of singlet oxygen and in vivo photodynamic therapeutic effects mediated by PEGylated W(18)O(49) nanowires.
    Kalluru P; Vankayala R; Chiang CS; Hwang KC
    Angew Chem Int Ed Engl; 2013 Nov; 52(47):12332-6. PubMed ID: 24136871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neoxanthin and fucoxanthin induce apoptosis in PC-3 human prostate cancer cells.
    Kotake-Nara E; Asai A; Nagao A
    Cancer Lett; 2005 Mar; 220(1):75-84. PubMed ID: 15737690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of dietary carotenoids with singlet oxygen (1O2) and free radicals: potential effects for human health.
    Böhm F; Edge R; Truscott TG
    Acta Biochim Pol; 2012; 59(1):27-30. PubMed ID: 22428151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The activity of G-ROS and the predominant role of Type II reaction in the photodynamic therapy using 9-hydroxypheophorbide-α for HeLa cell lines.
    Ahn JC; Chung PS
    Gen Physiol Biophys; 2012 Sep; 31(3):343-50. PubMed ID: 23047947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined effects of singlet oxygen and hydroxyl radical in photodynamic therapy with photostable bacteriochlorins: evidence from intracellular fluorescence and increased photodynamic efficacy in vitro.
    Dąbrowski JM; Arnaut LG; Pereira MM; Urbańska K; Simões S; Stochel G; Cortes L
    Free Radic Biol Med; 2012 Apr; 52(7):1188-200. PubMed ID: 22285766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro demonstration of the heavy-atom effect for photodynamic therapy.
    Gorman A; Killoran J; O'Shea C; Kenna T; Gallagher WM; O'Shea DF
    J Am Chem Soc; 2004 Sep; 126(34):10619-31. PubMed ID: 15327320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photophysical properties, singlet oxygen generation efficiency and cytotoxic effects of aloe emodin as a blue light photosensitizer for photodynamic therapy in dermatological treatment.
    Zang L; Zhao H; Ji X; Cao W; Zhang Z; Meng P
    Photochem Photobiol Sci; 2017 Jul; 16(7):1088-1094. PubMed ID: 28530733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of reactive oxygen species after photodynamic therapy by porphyrin sensitizers.
    Kolarova H; Nevrelova P; Tomankova K; Kolar P; Bajgar R; Mosinger J
    Gen Physiol Biophys; 2008 Jun; 27(2):101-5. PubMed ID: 18645224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoprotection by carotenoids.
    Mathews-Roth MM
    Fed Proc; 1987 Apr; 46(5):1890-3. PubMed ID: 3556613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of sensitizers by detecting reactive oxygen species after photodynamic reaction in vitro.
    Kolarova H; Bajgar R; Tomankova K; Nevrelova P; Mosinger J
    Toxicol In Vitro; 2007 Oct; 21(7):1287-91. PubMed ID: 17561369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Singlet oxygen production in photosynthesis.
    Krieger-Liszkay A
    J Exp Bot; 2005 Jan; 56(411):337-46. PubMed ID: 15310815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.