These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 22186024)
1. PARK9-associated ATP13A2 localizes to intracellular acidic vesicles and regulates cation homeostasis and neuronal integrity. Ramonet D; Podhajska A; Stafa K; Sonnay S; Trancikova A; Tsika E; Pletnikova O; Troncoso JC; Glauser L; Moore DJ Hum Mol Genet; 2012 Apr; 21(8):1725-43. PubMed ID: 22186024 [TBL] [Abstract][Full Text] [Related]
2. α-Synuclein-induced dopaminergic neurodegeneration in a rat model of Parkinson's disease occurs independent of ATP13A2 (PARK9). Daniel G; Musso A; Tsika E; Fiser A; Glauser L; Pletnikova O; Schneider BL; Moore DJ Neurobiol Dis; 2015 Jan; 73():229-43. PubMed ID: 25461191 [TBL] [Abstract][Full Text] [Related]
3. Common pathogenic effects of missense mutations in the P-type ATPase ATP13A2 (PARK9) associated with early-onset parkinsonism. Podhajska A; Musso A; Trancikova A; Stafa K; Moser R; Sonnay S; Glauser L; Moore DJ PLoS One; 2012; 7(6):e39942. PubMed ID: 22768177 [TBL] [Abstract][Full Text] [Related]
4. Lysosomal dysfunction in Parkinson disease: ATP13A2 gets into the groove. Dehay B; Martinez-Vicente M; Ramirez A; Perier C; Klein C; Vila M; Bezard E Autophagy; 2012 Sep; 8(9):1389-91. PubMed ID: 22885599 [TBL] [Abstract][Full Text] [Related]
5. Parkinson's disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes α-Synuclein externalization via exosomes. Kong SM; Chan BK; Park JS; Hill KJ; Aitken JB; Cottle L; Farghaian H; Cole AR; Lay PA; Sue CM; Cooper AA Hum Mol Genet; 2014 Jun; 23(11):2816-33. PubMed ID: 24603074 [TBL] [Abstract][Full Text] [Related]
6. Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration. Dehay B; Ramirez A; Martinez-Vicente M; Perier C; Canron MH; Doudnikoff E; Vital A; Vila M; Klein C; Bezard E Proc Natl Acad Sci U S A; 2012 Jun; 109(24):9611-6. PubMed ID: 22647602 [TBL] [Abstract][Full Text] [Related]
8. Regulation of ATP13A2 via PHD2-HIF1α Signaling Is Critical for Cellular Iron Homeostasis: Implications for Parkinson's Disease. Rajagopalan S; Rane A; Chinta SJ; Andersen JK J Neurosci; 2016 Jan; 36(4):1086-95. PubMed ID: 26818499 [TBL] [Abstract][Full Text] [Related]
9. Hereditary Parkinsonism-Associated Genetic Variations in PARK9 Locus Lead to Functional Impairment of ATPase Type 13A2. Park JS; Sue CM Curr Protein Pept Sci; 2017; 18(7):725-732. PubMed ID: 26965689 [TBL] [Abstract][Full Text] [Related]
10. Dysregulated iron metabolism in C. elegans catp-6/ATP13A2 mutant impairs mitochondrial function. Anand N; Holcom A; Broussalian M; Schmidt M; Chinta SJ; Lithgow GJ; Andersen JK; Chamoli M Neurobiol Dis; 2020 Jun; 139():104786. PubMed ID: 32032734 [TBL] [Abstract][Full Text] [Related]
11. The role of ATP13A2 in Parkinson's disease: Clinical phenotypes and molecular mechanisms. Park JS; Blair NF; Sue CM Mov Disord; 2015 May; 30(6):770-9. PubMed ID: 25900096 [TBL] [Abstract][Full Text] [Related]
12. Regulation of intracellular manganese homeostasis by Kufor-Rakeb syndrome-associated ATP13A2 protein. Tan J; Zhang T; Jiang L; Chi J; Hu D; Pan Q; Wang D; Zhang Z J Biol Chem; 2011 Aug; 286(34):29654-62. PubMed ID: 21724849 [TBL] [Abstract][Full Text] [Related]
13. Deficiency of ATP13A2 leads to lysosomal dysfunction, α-synuclein accumulation, and neurotoxicity. Usenovic M; Tresse E; Mazzulli JR; Taylor JP; Krainc D J Neurosci; 2012 Mar; 32(12):4240-6. PubMed ID: 22442086 [TBL] [Abstract][Full Text] [Related]
14. ATP13A2/PARK9 regulates endo-/lysosomal cargo sorting and proteostasis through a novel PI(3, 5)P2-mediated scaffolding function. Demirsoy S; Martin S; Motamedi S; van Veen S; Holemans T; Van den Haute C; Jordanova A; Baekelandt V; Vangheluwe P; Agostinis P Hum Mol Genet; 2017 May; 26(9):1656-1669. PubMed ID: 28334751 [TBL] [Abstract][Full Text] [Related]
15. ATP13A2 deficiency induces a decrease in cathepsin D activity, fingerprint-like inclusion body formation, and selective degeneration of dopaminergic neurons. Matsui H; Sato F; Sato S; Koike M; Taruno Y; Saiki S; Funayama M; Ito H; Taniguchi Y; Uemura N; Toyoda A; Sakaki Y; Takeda S; Uchiyama Y; Hattori N; Takahashi R FEBS Lett; 2013 May; 587(9):1316-25. PubMed ID: 23499937 [TBL] [Abstract][Full Text] [Related]
16. Lysosomal Storage of Subunit c of Mitochondrial ATP Synthase in Brain-Specific Atp13a2-Deficient Mice. Sato S; Koike M; Funayama M; Ezaki J; Fukuda T; Ueno T; Uchiyama Y; Hattori N Am J Pathol; 2016 Dec; 186(12):3074-3082. PubMed ID: 27770614 [TBL] [Abstract][Full Text] [Related]
17. Identification of novel ATP13A2 interactors and their role in α-synuclein misfolding and toxicity. Usenovic M; Knight AL; Ray A; Wong V; Brown KR; Caldwell GA; Caldwell KA; Stagljar I; Krainc D Hum Mol Genet; 2012 Sep; 21(17):3785-94. PubMed ID: 22645275 [TBL] [Abstract][Full Text] [Related]
18. Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Estrada-Cuzcano A; Martin S; Chamova T; Synofzik M; Timmann D; Holemans T; Andreeva A; Reichbauer J; De Rycke R; Chang DI; van Veen S; Samuel J; Schöls L; Pöppel T; Mollerup Sørensen D; Asselbergh B; Klein C; Zuchner S; Jordanova A; Vangheluwe P; Tournev I; Schüle R Brain; 2017 Feb; 140(2):287-305. PubMed ID: 28137957 [TBL] [Abstract][Full Text] [Related]
19. Loss of ATP13A2 impairs glycolytic function in Kufor-Rakeb syndrome patient-derived cell models. Park JS; Koentjoro B; Davis RL; Sue CM Parkinsonism Relat Disord; 2016 Jun; 27():67-73. PubMed ID: 27039055 [TBL] [Abstract][Full Text] [Related]
20. The Parkinson-associated human P5B-ATPase ATP13A2 modifies lipid homeostasis. Marcos AL; Corradi GR; Mazzitelli LR; Casali CI; Fernández Tome MDC; Adamo HP; de Tezanos Pinto F Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182993. PubMed ID: 31132336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]