BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22186120)

  • 41. Effect of surface roughness of biomaterials on Staphylococcus epidermidis adhesion.
    Yoda I; Koseki H; Tomita M; Shida T; Horiuchi H; Sakoda H; Osaki M
    BMC Microbiol; 2014 Sep; 14():234. PubMed ID: 25179448
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vitro and in vivo comparative colonization of Staphylococcus aureus and Staphylococcus epidermidis on orthopaedic implant materials.
    Barth E; Myrvik QM; Wagner W; Gristina AG
    Biomaterials; 1989 Jul; 10(5):325-8. PubMed ID: 2765629
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Study of bacterial adhesion to prosthetic valve materials in vitro].
    Huang Y; Zhang E; Shi Y; Tian Z; Zhou Q; Lei L; Jia W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1999 Dec; 16(4):406-10. PubMed ID: 12552711
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interactions of Pseudomonas aeruginosa and Staphylococcus epidermidis in adhesion to a hydrogel.
    George M; Ahearn D; Pierce G; Gabriel M
    Eye Contact Lens; 2003 Jan; 29(1 Suppl):S105-9; discussion S115-8, S192-4. PubMed ID: 12772744
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nitric oxide-releasing sol-gels as antibacterial coatings for orthopedic implants.
    Nablo BJ; Rothrock AR; Schoenfisch MH
    Biomaterials; 2005 Mar; 26(8):917-24. PubMed ID: 15353203
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Air-water interface displaces adsorbed bacteria.
    Pitt WG; McBride MO; Barton AJ; Sagers RD
    Biomaterials; 1993 Jul; 14(8):605-8. PubMed ID: 8399954
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vitro adherence of Staphylococcus epidermidis, Serratia marcescens, and Pseudomonas aeruginosa to AcrySof intraocular lenses.
    Pinna A; Zanetti S; Sechi LA; Carta F
    J Cataract Refract Surg; 2005 Dec; 31(12):2430-1. PubMed ID: 16473245
    [No Abstract]   [Full Text] [Related]  

  • 48. Ica-expression and gentamicin susceptibility of Staphylococcus epidermidis biofilm on orthopedic implant biomaterials.
    Nuryastuti T; Krom BP; Aman AT; Busscher HJ; van der Mei HC
    J Biomed Mater Res A; 2011 Feb; 96(2):365-71. PubMed ID: 21171156
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Effect of selected properties of Staphylococcus epidermidis to biofilm formation on orthopedic implants].
    Nowicka J; Bartoszewicz M; Gościniak G
    Med Dosw Mikrobiol; 2012; 64(3):189-96. PubMed ID: 23285772
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Use of a modified Robbins device to directly compare the adhesion of Staphylococcus epidermidis RP62A to surfaces.
    Linton CJ; Sherriff A; Millar MR
    J Appl Microbiol; 1999 Feb; 86(2):194-202. PubMed ID: 10063617
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Susceptibility of Vascular Implants to Colonization in vitro by Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Pseudomonas aeruginosa.
    Woźniak W; Kozińska A; Ciostek P; Sitkiewicz I
    Pol J Microbiol; 2017 Mar; 66(1):125-129. PubMed ID: 29359697
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phosphorylcholine impairs susceptibility to biofilm formation of hydrogel contact lenses.
    Selan L; Palma S; Scoarughi GL; Papa R; Veeh R; Di Clemente D; Artini M
    Am J Ophthalmol; 2009 Jan; 147(1):134-9. PubMed ID: 18790470
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adherence to and accumulation of S. epidermidis on different biomaterials due to extracellular slime production. In vitro comparison of a slime-producing strain (Rp 62 A) and its isogenic slime negative mutant (M7).
    König DP; Perdreau-Remington F; Rütt J; Hilgers RD; Schierholz JM
    Zentralbl Bakteriol; 1999 Jul; 289(3):355-64. PubMed ID: 10467666
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Poly(ethylene glycol)-polyacrylate copolymers modified to control adherent monocyte-macrophage physiology: interactions with attaching Staphylococcus epidermidis or Pseudomonas aeruginosa bacteria.
    Wagner VE; Bryers JD
    J Biomed Mater Res A; 2004 Apr; 69(1):79-90. PubMed ID: 14999754
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bacterial adhesion to intravenous cannulae: influence of implantation in the rabbit and of enzyme treatments.
    Barrett SP
    Epidemiol Infect; 1988 Feb; 100(1):91-100. PubMed ID: 3123262
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adhesion of slime producing Staphylococcus epidermidis strains to PVC and diamond-like carbon/silver/fluorinated coatings.
    Katsikogianni M; Spiliopoulou I; Dowling DP; Missirlis YF
    J Mater Sci Mater Med; 2006 Aug; 17(8):679-89. PubMed ID: 16897160
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exclusion of uropathogen adhesion to polymer surfaces by Lactobacillus acidophilus.
    Hawthorn LA; Reid G
    J Biomed Mater Res; 1990 Jan; 24(1):39-46. PubMed ID: 2105962
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of plastic catheter material on bacterial adherence and viability.
    Lopez-Lopez G; Pascual A; Perea EJ
    J Med Microbiol; 1991 Jun; 34(6):349-53. PubMed ID: 1905357
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Measurement of bacterial growth rates on polymers.
    Barton AJ; Sagers RD; Pitt WG
    J Biomed Mater Res; 1996 Oct; 32(2):271-8. PubMed ID: 8884505
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanism of cell integration on biomaterial implant surfaces in the presence of bacterial contamination.
    Yue C; van der Mei HC; Kuijer R; Busscher HJ; Rochford ET
    J Biomed Mater Res A; 2015 Nov; 103(11):3590-8. PubMed ID: 25966819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.