These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 22186186)

  • 1. Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences.
    Zalapa JE; Cuevas H; Zhu H; Steffan S; Senalik D; Zeldin E; McCown B; Harbut R; Simon P
    Am J Bot; 2012 Feb; 99(2):193-208. PubMed ID: 22186186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of next-generation sequencing in plant biology.
    Egan AN; Schlueter J; Spooner DM
    Am J Bot; 2012 Feb; 99(2):175-85. PubMed ID: 22312116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing selection of microsatellite loci from 454 pyrosequencing via post-sequencing bioinformatic analyses.
    Fernandez-Silva I; Toonen RJ
    Methods Mol Biol; 2013; 1006():101-20. PubMed ID: 23546786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a High-Density American Cranberry (
    Schlautman B; Covarrubias-Pazaran G; Diaz-Garcia L; Iorizzo M; Polashock J; Grygleski E; Vorsa N; Zalapa J
    G3 (Bethesda); 2017 Apr; 7(4):1177-1189. PubMed ID: 28250016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics.
    Straub SC; Parks M; Weitemier K; Fishbein M; Cronn RC; Liston A
    Am J Bot; 2012 Feb; 99(2):349-64. PubMed ID: 22174336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolating microsatellite loci: looking back, looking ahead.
    Andrés JA; Bogdanowicz SM
    Methods Mol Biol; 2011; 772():211-32. PubMed ID: 22065440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mining and validation of pyrosequenced simple sequence repeats (SSRs) from American cranberry (Vaccinium macrocarpon Ait.).
    Zhu H; Senalik D; McCown BH; Zeldin EL; Speers J; Hyman J; Bassil N; Hummer K; Simon PW; Zalapa JE
    Theor Appl Genet; 2012 Jan; 124(1):87-96. PubMed ID: 21904845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lessons learned from microsatellite development for nonmodel organisms using 454 pyrosequencing.
    Schoebel CN; Brodbeck S; Buehler D; Cornejo C; Gajurel J; Hartikainen H; Keller D; Leys M; Ríčanová S; Segelbacher G; Werth S; Csencsics D
    J Evol Biol; 2013 Mar; 26(3):600-11. PubMed ID: 23331991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PSR: polymorphic SSR retrieval.
    Cantarella C; D'Agostino N
    BMC Res Notes; 2015 Oct; 8():525. PubMed ID: 26428628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of 697 novel polymorphic genomic and EST-SSR markers in the American cranberry (Vaccinium macrocarpon Ait.).
    Schlautman B; Fajardo D; Bougie T; Wiesman E; Polashock J; Vorsa N; Steffan S; Zalapa J
    Molecules; 2015 Jan; 20(2):2001-13. PubMed ID: 25633331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mining and Development of Novel SSR Markers Using Next Generation Sequencing (NGS) Data in Plants.
    Taheri S; Lee Abdullah T; Yusop MR; Hanafi MM; Sahebi M; Azizi P; Shamshiri RR
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29438290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of read length, quality and quantity on microsatellite discovery and primer development: from Illumina to PacBio.
    Wei N; Bemmels JB; Dick CW
    Mol Ecol Resour; 2014 Sep; 14(5):953-65. PubMed ID: 24576200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinformatics: identification of markers from next-generation sequence data.
    Ruperao P; Edwards D
    Methods Mol Biol; 2015; 1245():29-47. PubMed ID: 25373747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microsatellite development for the relictual conifer Araucaria araucana (Araucariaceae) using next-generation sequencing.
    Martín MA; Mattioni C; Lusini I; Drake F; Cherubini M; Herrera MA; Villani F; Martín LM
    Am J Bot; 2012 May; 99(5):e213-5. PubMed ID: 22539504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current state-of-art of sequencing technologies for plant genomics research.
    Thudi M; Li Y; Jackson SA; May GD; Varshney RK
    Brief Funct Genomics; 2012 Jan; 11(1):3-11. PubMed ID: 22345601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of chromosome-arm-specific microsatellite markers in Triticum aestivum (Poaceae) using NGS technology.
    Nie X; Li B; Wang L; Liu P; Biradar SS; Li T; Dolezel J; Edwards D; Luo M; Weining S
    Am J Bot; 2012 Sep; 99(9):e369-71. PubMed ID: 22935363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microsatellite DNA capture from enriched libraries.
    Gonzalez EG; Zardoya R
    Methods Mol Biol; 2013; 1006():67-87. PubMed ID: 23546784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SNP discovery by transcriptome pyrosequencing.
    Barbazuk WB; Schnable PS
    Methods Mol Biol; 2011; 729():225-46. PubMed ID: 21365494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The first genetic map of the American cranberry: exploration of synteny conservation and quantitative trait loci.
    Georgi L; Johnson-Cicalese J; Honig J; Das SP; Rajah VD; Bhattacharya D; Bassil N; Rowland LJ; Polashock J; Vorsa N
    Theor Appl Genet; 2013 Mar; 126(3):673-92. PubMed ID: 23224333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Next-generation sequencing and its applications in molecular diagnostics.
    Su Z; Ning B; Fang H; Hong H; Perkins R; Tong W; Shi L
    Expert Rev Mol Diagn; 2011 Apr; 11(3):333-43. PubMed ID: 21463242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.