These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 22186288)

  • 1. Diffuse scattering in relaxor ferroelectrics: true three-dimensional mapping, experimental artefacts and modelling.
    Bosak A; Chernyshov D; Vakhrushev S; Krisch M
    Acta Crystallogr A; 2012 Jan; 68(Pt 1):117-23. PubMed ID: 22186288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase instability induced by polar nanoregions in a relaxor ferroelectric system.
    Xu G; Wen J; Stock C; Gehring PM
    Nat Mater; 2008 Jul; 7(7):562-6. PubMed ID: 18469821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phonon localization drives polar nanoregions in a relaxor ferroelectric.
    Manley ME; Lynn JW; Abernathy DL; Specht ED; Delaire O; Bishop AR; Sahul R; Budai JD
    Nat Commun; 2014 Apr; 5():3683. PubMed ID: 24718289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric.
    Xu G; Zhong Z; Bing Y; Ye ZG; Shirane G
    Nat Mater; 2006 Feb; 5(2):134-40. PubMed ID: 16415875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slush-like polar structures in single-crystal relaxors.
    Takenaka H; Grinberg I; Liu S; Rappe AM
    Nature; 2017 Jun; 546(7658):391-395. PubMed ID: 28617453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations.
    Manley ME; Abernathy DL; Sahul R; Parshall DE; Lynn JW; Christianson AD; Stonaha PJ; Specht ED; Budai JD
    Sci Adv; 2016 Sep; 2(9):e1501814. PubMed ID: 27652338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization of polar nanoregions in lead-free relaxors via piezoresponse force microscopy in torsional dual AC resonance tracking mode.
    Liu N; Dittmer R; Stark RW; Dietz C
    Nanoscale; 2015 Jul; 7(27):11787-96. PubMed ID: 26106953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elastic and anelastic relaxations in the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3: I. Strain analysis and a static order parameter.
    Carpenter MA; Bryson JF; Catalan G; Howard CJ
    J Phys Condens Matter; 2012 Feb; 24(4):045901. PubMed ID: 22185960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure-induced suppression of the diffuse scattering in the model relaxor ferroelectric PbMg(1/3)Nb(2/3)O3.
    Chaabane B; Kreisel J; Dkhil B; Bouvier P; Mezouar M
    Phys Rev Lett; 2003 Jun; 90(25 Pt 1):257601. PubMed ID: 12857166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory of relaxor-ferroelectricity.
    Zhang LL; Huang YN
    Sci Rep; 2020 Mar; 10(1):5060. PubMed ID: 32193443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulations for describing the ferroelectric-relaxor crossover in BaTiO₃-based solid solutions.
    Padurariu L; Enachescu C; Mitoseriu L
    J Phys Condens Matter; 2011 Aug; 23(32):325901. PubMed ID: 21785183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals.
    Li F; Zhang S; Yang T; Xu Z; Zhang N; Liu G; Wang J; Wang J; Cheng Z; Ye ZG; Luo J; Shrout TR; Chen LQ
    Nat Commun; 2016 Dec; 7():13807. PubMed ID: 27991504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamical properties of the relaxor ferroelectric 0.71Pb(Ni1/3Nb2/3))O3-O.29PbTiO3 probed by Brillouin and Raman scattering.
    Tsukada S; Ike Y; Kano J; Kojima S; Sekiya T; Shimojo Y; Wang R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2632-6. PubMed ID: 18276568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structural state of lead-based relaxor ferroelectrics under pressure.
    Mihailova B; Angel RJ; Maier BJ; Welsch AM; Zhao J; Gospodinov M; Bismayer U
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Sep; 58(9):1905-13. PubMed ID: 21937324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local ordering in lead-based relaxor ferroelectrics.
    Goossens DJ
    Acc Chem Res; 2013 Nov; 46(11):2597-606. PubMed ID: 23735073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpretation of T(m) and T* in relaxor ferroelectric 0.93Pb(Zn₁/₃Nb₂/₃)O₃-0.07PbTiO₃.
    Tsukada S; Terado Y; Moriyoshi C; Kuroiwa Y; Kojima S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Oct; 57(10):2159-64. PubMed ID: 20889400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenomenological model of dynamic nonlinear response of relaxor ferroelectrics.
    Glazounov AE; Tagantsev AK
    Phys Rev Lett; 2000 Sep; 85(10):2192-5. PubMed ID: 10970495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field-induced percolation of polar nanoregions in relaxor ferroelectrics.
    Prosandeev S; Wang D; Akbarzadeh AR; Dkhil B; Bellaiche L
    Phys Rev Lett; 2013 May; 110(20):207601. PubMed ID: 25167451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room-Temperature Large and Reversible Modulation of Photoluminescence by in Situ Electric Field in Ergodic Relaxor Ferroelectrics.
    Sun H; Wu X; Peng DF; Kwok KW
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34042-34049. PubMed ID: 28901135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local lattice dynamics and the origin of the relaxor ferroelectric behavior.
    Dmowski W; Vakhrushev SB; Jeong IK; Hehlen MP; Trouw F; Egami T
    Phys Rev Lett; 2008 Apr; 100(13):137602. PubMed ID: 18517997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.