These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 22186883)

  • 21. Bulk versus interfacial aqueous solvation of dicarboxylate dianions.
    Minofar B; Mucha M; Jungwirth P; Yang X; Fu YJ; Wang XB; Wang LS
    J Am Chem Soc; 2004 Sep; 126(37):11691-8. PubMed ID: 15366917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular dynamics simulations of the solution-air interface of aqueous sodium nitrate.
    Thomas JL; Roeselová M; Dang LX; Tobias DJ
    J Phys Chem A; 2007 Apr; 111(16):3091-8. PubMed ID: 17402716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-monotonic dependence of water reorientation dynamics on surface hydrophilicity: competing effects of the hydration structure and hydrogen-bond strength.
    Stirnemann G; Castrillón SR; Hynes JT; Rossky PJ; Debenedetti PG; Laage D
    Phys Chem Chem Phys; 2011 Nov; 13(44):19911-7. PubMed ID: 21897944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion.
    Sendner C; Horinek D; Bocquet L; Netz RR
    Langmuir; 2009 Sep; 25(18):10768-81. PubMed ID: 19591481
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure of water at charged interfaces: a molecular dynamics study.
    Dewan S; Carnevale V; Bankura A; Eftekhari-Bafrooei A; Fiorin G; Klein ML; Borguet E
    Langmuir; 2014 Jul; 30(27):8056-65. PubMed ID: 24979659
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On simulations of complex interfaces: molecular dynamics simulations of stationary phases.
    Hall K; Ashtari M; Cann NM
    J Chem Phys; 2012 Mar; 136(11):114705. PubMed ID: 22443788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular hydrophobic attraction and ion-specific effects studied by molecular dynamics.
    Horinek D; Serr A; Bonthuis DJ; Boström M; Kunz W; Netz RR
    Langmuir; 2008 Feb; 24(4):1271-83. PubMed ID: 18220430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interfacial thermodynamics of confined water near molecularly rough surfaces.
    Mittal J; Hummer G
    Faraday Discuss; 2010; 146():341-52; discussion 367-93, 395-401. PubMed ID: 21043431
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of molecular simulation methods to accurately represent protein-surface interactions: The effect of pressure and its determination for a system with constrained atoms.
    Yancey JA; Vellore NA; Collier G; Stuart SJ; Latour RA
    Biointerphases; 2010 Sep; 5(3):85-95. PubMed ID: 21171722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aqueous ionic and complementary zwitterionic soluble surfactants: molecular dynamics simulations and sum frequency generation spectroscopy of the surfaces.
    Petrov M; Minofar B; Vrbka L; Jungwirth P; Koelsch P; Motschmann H
    Langmuir; 2006 Mar; 22(6):2498-505. PubMed ID: 16519446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The interface between water and a hydrophobic gas.
    Reed SK; Westacott RE
    Phys Chem Chem Phys; 2008 Aug; 10(31):4614-22. PubMed ID: 18665311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure, energetics, and dynamics of water adsorbed on the muscovite (001) surface: a molecular dynamics simulation.
    Wang J; Kalinichev AG; Kirkpatrick RJ; Cygan RT
    J Phys Chem B; 2005 Aug; 109(33):15893-905. PubMed ID: 16853018
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the salt-induced stabilization of pair and many-body hydrophobic interactions.
    Ghosh T; Kalra A; Garde S
    J Phys Chem B; 2005 Jan; 109(1):642-51. PubMed ID: 16851057
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular dynamics simulations of water droplets on polymer surfaces.
    Hirvi JT; Pakkanen TA
    J Chem Phys; 2006 Oct; 125(14):144712. PubMed ID: 17042636
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How surface wettability affects the binding, folding, and dynamics of hydrophobic polymers at interfaces.
    Jamadagni SN; Godawat R; Garde S
    Langmuir; 2009 Nov; 25(22):13092-9. PubMed ID: 19492828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Is there a liquid-liquid transition in confined water?
    Xu L; Molinero V
    J Phys Chem B; 2011 Dec; 115(48):14210-6. PubMed ID: 21923129
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reorientation dynamics of nanoconfined water: power-law decay, hydrogen-bond jumps, and test of a two-state model.
    Laage D; Thompson WH
    J Chem Phys; 2012 Jan; 136(4):044513. PubMed ID: 22299897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of organic ligands, electrostatic and magnetic interactions in formation of colloidal and interfacial inorganic nanostructures.
    Khomutov GB; Koksharov YA
    Adv Colloid Interface Sci; 2006 Sep; 122(1-3):119-47. PubMed ID: 16887093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A macroscopic water structure based model for describing charging phenomena at inert hydrophobic surfaces in aqueous electrolyte solutions.
    Lützenkirchen J; Preocanin T; Kallay N
    Phys Chem Chem Phys; 2008 Aug; 10(32):4946-55. PubMed ID: 18688539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.