These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 22187075)
1. Freeze drying formulation using microscale and design of experiment approaches: a case study using granulocyte colony-stimulating factor. Grant Y; Matejtschuk P; Bird C; Wadhwa M; Dalby PA Biotechnol Lett; 2012 Apr; 34(4):641-8. PubMed ID: 22187075 [TBL] [Abstract][Full Text] [Related]
2. Rapid optimization of protein freeze-drying formulations using ultra scale-down and factorial design of experiment in microplates. Grant Y; Matejtschuk P; Dalby PA Biotechnol Bioeng; 2009 Dec; 104(5):957-64. PubMed ID: 19530082 [TBL] [Abstract][Full Text] [Related]
3. Basic Principles of Lyophilization, Part 2. Akers MJ Int J Pharm Compd; 2016; 20(1):20-7. PubMed ID: 27125053 [TBL] [Abstract][Full Text] [Related]
4. Freeze drying of L-arginine/sucrose-based protein formulations, part I: influence of formulation and arginine counter ion on the critical formulation temperature, product performance and protein stability. Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P J Pharm Sci; 2015 Jul; 104(7):2345-58. PubMed ID: 25994980 [TBL] [Abstract][Full Text] [Related]
5. Arginine as an Excipient for Protein Freeze-Drying: A Mini Review. Stärtzel P J Pharm Sci; 2018 Apr; 107(4):960-967. PubMed ID: 29183741 [TBL] [Abstract][Full Text] [Related]
6. Physical characterisation of formulations for the development of two stable freeze-dried proteins during both dried and liquid storage. Passot S; Fonseca F; Alarcon-Lorca M; Rolland D; Marin M Eur J Pharm Biopharm; 2005 Aug; 60(3):335-48. PubMed ID: 15894475 [TBL] [Abstract][Full Text] [Related]
7. Stability of buffer-free freeze-dried formulations: A feasibility study of a monoclonal antibody at high protein concentrations. Garidel P; Pevestorf B; Bahrenburg S Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):125-39. PubMed ID: 26455339 [TBL] [Abstract][Full Text] [Related]
8. Investigation of the stabilisation of freeze-dried lysozyme and the physical properties of the formulations. Liao YH; Brown MB; Martin GP Eur J Pharm Biopharm; 2004 Jul; 58(1):15-24. PubMed ID: 15207533 [TBL] [Abstract][Full Text] [Related]
9. Effect of formulation and freeze-drying on the long-term stability of rDNA-derived cytokines. Dawson PJ Dev Biol Stand; 1992; 74():273-82; discussion 282-4. PubMed ID: 1592176 [TBL] [Abstract][Full Text] [Related]
10. Use of a temperature ramp approach (TRA) to design an optimum and robust freeze-drying process for pharmaceutical formulations. Assegehegn G; Brito-de la Fuente E; Franco JM; Gallegos C Int J Pharm; 2020 Mar; 578():119116. PubMed ID: 32027958 [TBL] [Abstract][Full Text] [Related]
11. Well-plate freeze-drying: a high throughput platform for screening of physical properties of freeze-dried formulations. Trnka H; Rantanen J; Grohganz H Pharm Dev Technol; 2015 Jan; 20(1):65-73. PubMed ID: 24417680 [TBL] [Abstract][Full Text] [Related]
12. Applications of Freezing and Freeze-Drying in Pharmaceutical Formulations. Izutsu KI Adv Exp Med Biol; 2018; 1081():371-383. PubMed ID: 30288720 [TBL] [Abstract][Full Text] [Related]
13. Lyophilized Drug Product Cake Appearance: What Is Acceptable? Patel SM; Nail SL; Pikal MJ; Geidobler R; Winter G; Hawe A; Davagnino J; Rambhatla Gupta S J Pharm Sci; 2017 Jul; 106(7):1706-1721. PubMed ID: 28341598 [TBL] [Abstract][Full Text] [Related]
14. Stability study of drug-loaded proteinoid microsphere formulations during freeze-drying. Ma X; Santiago N; Chen YS; Chaudhary K; Milstein SJ; Baughman RA J Drug Target; 1994; 2(1):9-21. PubMed ID: 8069587 [TBL] [Abstract][Full Text] [Related]
15. Evaluating the effects of buffer conditions and extremolytes on thermostability of granulocyte colony-stimulating factor using high-throughput screening combined with design of experiments. Ablinger E; Hellweger M; Leitgeb S; Zimmer A Int J Pharm; 2012 Oct; 436(1-2):744-52. PubMed ID: 22850292 [TBL] [Abstract][Full Text] [Related]
16. Protein-excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Kamerzell TJ; Esfandiary R; Joshi SB; Middaugh CR; Volkin DB Adv Drug Deliv Rev; 2011 Oct; 63(13):1118-59. PubMed ID: 21855584 [TBL] [Abstract][Full Text] [Related]
17. Formulation and stability of freeze-dried proteins: effects of moisture and oxygen on the stability of freeze-dried formulations of human growth hormone. Pikal MJ; Dellerman K; Roy ML Dev Biol Stand; 1992; 74():21-37; discussion 37-8. PubMed ID: 1592171 [TBL] [Abstract][Full Text] [Related]
18. Optimization of a pharmaceutical freeze-dried product and its process using an experimental design approach and innovative process analyzers. De Beer TR; Wiggenhorn M; Hawe A; Kasper JC; Almeida A; Quinten T; Friess W; Winter G; Vervaet C; Remon JP Talanta; 2011 Feb; 83(5):1623-33. PubMed ID: 21238761 [TBL] [Abstract][Full Text] [Related]
19. Basic Principles of Lyophilization, Part 1. Akers MJ Int J Pharm Compd; 2015; 19(6):471-6. PubMed ID: 26891561 [TBL] [Abstract][Full Text] [Related]
20. Lyophilization Process Design and Development: A Single-Step Drying Approach. Pansare SK; Patel SM J Pharm Sci; 2019 Apr; 108(4):1423-1433. PubMed ID: 30468830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]