BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22187125)

  • 1. Trace metal complexation by the triscatecholate siderophore protochelin: structure and stability.
    Harrington JM; Bargar JR; Jarzecki AA; Roberts JG; Sombers LA; Duckworth OW
    Biometals; 2012 Apr; 25(2):393-412. PubMed ID: 22187125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salicylate coordination in metal-protochelin complexes.
    Doydora SA; Baars O; Harrington JM; Duckworth OW
    Biometals; 2022 Feb; 35(1):87-98. PubMed ID: 34837588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of molybdate and other transition metals in the accumulation of protochelin by Azotobacter vinelandii.
    Cornish AS; Page WJ
    Appl Environ Microbiol; 2000 Apr; 66(4):1580-6. PubMed ID: 10742245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fe(III)-complexes of the tripodal trishydroxamate siderophore basidiochrome: potential biological implications.
    Harrington JM; Winkelmann G; Haselwandter K; Crumbliss AL
    J Inorg Biochem; 2011 Dec; 105(12):1670-4. PubMed ID: 22079978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mn(II)/Mn(III) and Fe(III) binding capability of two Aspergillus fumigatus siderophores, desferricrocin and N', N″, N‴-triacetylfusarinine C.
    Farkas E; Szabó O; Parajdi-Losonczi PL; Balla G; Pócsi I
    J Inorg Biochem; 2014 Oct; 139():30-7. PubMed ID: 24959697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, solution behavior, thermal stability, and biological activity of an Fe(III) complex of an artificial siderophore with intramolecular hydrogen bonding networks.
    Matsumoto K; Ozawa T; Jitsukawa K; Masuda H
    Inorg Chem; 2004 Dec; 43(26):8538-46. PubMed ID: 15606204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron chelation equilibria, redox, and siderophore activity of a saccharide platform ferrichrome analogue.
    Dhungana S; Harrington JM; Gebhardt P; Möllmann U; Crumbliss AL
    Inorg Chem; 2007 Oct; 46(20):8362-71. PubMed ID: 17824601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction?
    Grybos M; Davranche M; Gruau G; Petitjean P
    J Colloid Interface Sci; 2007 Oct; 314(2):490-501. PubMed ID: 17692327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordination Chemistry of Microbial Iron Transport.
    Raymond KN; Allred BE; Sia AK
    Acc Chem Res; 2015 Sep; 48(9):2496-505. PubMed ID: 26332443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron(III) coordination chemistry of alterobactin A: a siderophore from the marine bacterium Alteromonas luteoviolacea.
    Holt PD; Reid RR; Lewis BL; Luther GW; Butler A
    Inorg Chem; 2005 Oct; 44(21):7671-7. PubMed ID: 16212394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled biogeochemical cycling of iron and manganese as mediated by microbial siderophores.
    Duckworth OW; Bargar JR; Sposito G
    Biometals; 2009 Aug; 22(4):605-13. PubMed ID: 19238560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Siderophore-promoted dissolution of chromium from hydroxide minerals.
    Duckworth OW; Akafia MM; Andrews MY; Bargar JR
    Environ Sci Process Impacts; 2014 May; 16(6):1348-59. PubMed ID: 24683601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hard and soft X-ray absorption spectroscopic investigation of aqueous Fe(III)-hydroxamate siderophore complexes.
    Edwards DC; Myneni SC
    J Phys Chem A; 2005 Nov; 109(45):10249-56. PubMed ID: 16833318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron chelation properties of an extracellular siderophore exochelin MN.
    Dhungana S; Miller MJ; Dong L; Ratledge C; Crumbliss AL
    J Am Chem Soc; 2003 Jun; 125(25):7654-63. PubMed ID: 12812507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical and Solution Structural Characterization of Fe(III) Azotochelin Complexes: Examining the Coordination Behavior of a Tetradentate Siderophore.
    Baranska NG; Parkin A; Duhme-Klair AK
    Inorg Chem; 2022 Dec; 61(48):19172-19182. PubMed ID: 36251475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Fe(III) sequestration by an analog of the cytotoxic siderophore brasilibactin A: implications for the iron transport mechanism in mycobacteria.
    Harrington JM; Park H; Ying Y; Hong J; Crumbliss AL
    Metallomics; 2011 May; 3(5):464-71. PubMed ID: 21442123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization, and ligand exchange reactivity of a series of first row divalent metal 3-hydroxyflavonolate complexes.
    Grubel K; Rudzka K; Arif AM; Klotz KL; Halfen JA; Berreau LM
    Inorg Chem; 2010 Jan; 49(1):82-96. PubMed ID: 19954165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The catecholate siderophores of Azotobacter vinelandii: their affinity for iron and role in oxygen stress management.
    Cornish AS; Page WJ
    Microbiology (Reading); 1998 Jul; 144(7):1747-1754. PubMed ID: 33757230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carrier-facilitated bulk liquid membrane transport of iron(III)-siderophore complexes utilizing first coordination sphere recognition.
    Wirgau JI; Crumbliss AL
    Inorg Chem; 2003 Sep; 42(18):5762-70. PubMed ID: 12950227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.