These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 22187371)

  • 1. Nutrient sensing, autophagy, and diabetic nephropathy.
    Kume S; Thomas MC; Koya D
    Diabetes; 2012 Jan; 61(1):23-9. PubMed ID: 22187371
    [No Abstract]   [Full Text] [Related]  

  • 2. Role of nutrient-sensing signals in the pathogenesis of diabetic nephropathy.
    Kume S; Koya D; Uzu T; Maegawa H
    Biomed Res Int; 2014; 2014():315494. PubMed ID: 25126552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Impaired Nutrient and Oxygen Deprivation Signaling and Deficient Autophagic Flux in Diabetic CKD Development: Implications for Understanding the Effects of Sodium-Glucose Cotransporter 2-Inhibitors.
    Packer M
    J Am Soc Nephrol; 2020 May; 31(5):907-919. PubMed ID: 32276962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The life span-prolonging effect of sirtuin-1 is mediated by autophagy.
    Morselli E; Maiuri MC; Markaki M; Megalou E; Pasparaki A; Palikaras K; Criollo A; Galluzzi L; Malik SA; Vitale I; Michaud M; Madeo F; Tavernarakis N; Kroemer G
    Autophagy; 2010 Jan; 6(1):186-8. PubMed ID: 20023410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of diabetic nephropathy--old buddies and newcomers part 1.
    Nawroth PP; Isermann B
    Exp Clin Endocrinol Diabetes; 2010 Oct; 118(9):571-6. PubMed ID: 20658438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigation of the Adverse Consequences of Nutrient Excess on the Kidney: A Unified Hypothesis to Explain the Renoprotective Effects of Sodium-Glucose Cotransporter 2 Inhibitors.
    Packer M
    Am J Nephrol; 2020; 51(4):289-293. PubMed ID: 32126558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous Nuclear Ribonucleoprotein F Stimulates Sirtuin-1 Gene Expression and Attenuates Nephropathy Progression in Diabetic Mice.
    Lo CS; Shi Y; Chenier I; Ghosh A; Wu CH; Cailhier JF; Ethier J; Lattouf JB; Filep JG; Ingelfinger JR; Zhang SL; Chan JSD
    Diabetes; 2017 Jul; 66(7):1964-1978. PubMed ID: 28424160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response.
    Quan W; Kim HK; Moon EY; Kim SS; Choi CS; Komatsu M; Jeong YT; Lee MK; Kim KW; Kim MS; Lee MS
    Endocrinology; 2012 Apr; 153(4):1817-26. PubMed ID: 22334718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interventions against nutrient-sensing pathways represent an emerging new therapeutic approach for diabetic nephropathy.
    Koya D; Kitada M; Kume S; Kanasaki K
    Clin Exp Nephrol; 2014 Apr; 18(2):210-3. PubMed ID: 24221306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Management of diabetic nephropathy: the role of sirtuin-1.
    Wang W; Sun W; Cheng Y; Xu Z; Cai L
    Future Med Chem; 2019 Sep; 11(17):2241-2245. PubMed ID: 31581918
    [No Abstract]   [Full Text] [Related]  

  • 11. Sirt1 is essential for resveratrol enhancement of hypoxia-induced autophagy in the type 2 diabetic nephropathy rat.
    Ma L; Fu R; Duan Z; Lu J; Gao J; Tian L; Lv Z; Chen Z; Han J; Jia L; Wang L
    Pathol Res Pract; 2016 Apr; 212(4):310-8. PubMed ID: 26872534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autophagy: regulation by energy sensing.
    Meijer AJ; Codogno P
    Curr Biol; 2011 Mar; 21(6):R227-9. PubMed ID: 21419990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of sirtuin-1 in diabetic nephropathy.
    Wang W; Sun W; Cheng Y; Xu Z; Cai L
    J Mol Med (Berl); 2019 Mar; 97(3):291-309. PubMed ID: 30707256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of AMP-activated protein kinase in the control of appetite.
    Kola B
    J Neuroendocrinol; 2008 Jul; 20(7):942-51. PubMed ID: 18445126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. P2Y2R contributes to the development of diabetic nephropathy by inhibiting autophagy response.
    Dusabimana T; Kim SR; Park EJ; Je J; Jeong K; Yun SP; Kim HJ; Kim H; Park SW
    Mol Metab; 2020 Dec; 42():101089. PubMed ID: 32987187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How stem cells get "turned on".
    Wagers AJ
    EMBO J; 2014 Dec; 33(23):2743-4. PubMed ID: 25344560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of p53/miR-34a/SIRT1 axis ameliorates podocyte injury in diabetic nephropathy.
    Liang Y; Liu H; Zhu J; Song N; Lu Z; Fang Y; Teng J; Dai Y; Ding X
    Biochem Biophys Res Commun; 2021 Jun; 559():48-55. PubMed ID: 33932899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensing nutrient and energy status by SnRK1 and TOR kinases.
    Robaglia C; Thomas M; Meyer C
    Curr Opin Plant Biol; 2012 Jun; 15(3):301-7. PubMed ID: 22305521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autophagy: emerging therapeutic target for diabetic nephropathy.
    Kume S; Yamahara K; Yasuda M; Maegawa H; Koya D
    Semin Nephrol; 2014 Jan; 34(1):9-16. PubMed ID: 24485025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KCa3.1 mediates dysfunction of tubular autophagy in diabetic kidneys via PI3k/Akt/mTOR signaling pathways.
    Huang C; Lin MZ; Cheng D; Braet F; Pollock CA; Chen XM
    Sci Rep; 2016 Mar; 6():23884. PubMed ID: 27029904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.