BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22187431)

  • 1. Inactivation of arf-bp1 induces p53 activation and diabetic phenotypes in mice.
    Kon N; Zhong J; Qiang L; Accili D; Gu W
    J Biol Chem; 2012 Feb; 287(7):5102-11. PubMed ID: 22187431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor.
    Chen D; Kon N; Li M; Zhang W; Qin J; Gu W
    Cell; 2005 Jul; 121(7):1071-83. PubMed ID: 15989956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dichotomous role of pancreatic HUWE1/MULE/ARF-BP1 in modulating beta cell apoptosis in mice under physiological and genotoxic conditions.
    Wang L; Luk CT; Schroer SA; Smith AM; Li X; Cai EP; Gaisano H; MacDonald PE; Hao Z; Mak TW; Woo M
    Diabetologia; 2014 Sep; 57(9):1889-98. PubMed ID: 24981769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homeostatic defects in B cells deficient in the E3 ubiquitin ligase ARF-BP1 are restored by enhanced expression of MYC.
    Qi CF; Zhang R; Sun J; Li Z; Shin DM; Wang H; Kovalchuk AL; Sakai T; Xiong H; Kon N; Gu W; Morse HC
    Leuk Res; 2013 Dec; 37(12):1680-9. PubMed ID: 24199708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of ARF-BP1/HUWE1 interactions with CTCF, MYC, ARF and p53 in MYC-driven B cell neoplasms.
    Qi CF; Kim YS; Xiang S; Abdullaev Z; Torrey TA; Janz S; Kovalchuk AL; Sun J; Chen D; Cho WC; Gu W; Morse Iii HC
    Int J Mol Sci; 2012; 13(5):6204-6219. PubMed ID: 22754359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ARF-BP1 as a potential therapeutic target.
    Chen D; Brooks CL; Gu W
    Br J Cancer; 2006 Jun; 94(11):1555-8. PubMed ID: 16641901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. USP4 inhibits p53 through deubiquitinating and stabilizing ARF-BP1.
    Zhang X; Berger FG; Yang J; Lu X
    EMBO J; 2011 Jun; 30(11):2177-89. PubMed ID: 21522127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. p53 ubiquitination: Mdm2 and beyond.
    Brooks CL; Gu W
    Mol Cell; 2006 Feb; 21(3):307-15. PubMed ID: 16455486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The E3 ubiquitin ligase Mule acts through the ATM-p53 axis to maintain B lymphocyte homeostasis.
    Hao Z; Duncan GS; Su YW; Li WY; Silvester J; Hong C; You H; Brenner D; Gorrini C; Haight J; Wakeham A; You-Ten A; McCracken S; Elia A; Li Q; Detmar J; Jurisicova A; Hobeika E; Reth M; Sheng Y; Lang PA; Ohashi PS; Zhong Q; Wang X; Mak TW
    J Exp Med; 2012 Jan; 209(1):173-86. PubMed ID: 22213803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53.
    Honda R; Yasuda H
    EMBO J; 1999 Jan; 18(1):22-7. PubMed ID: 9878046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactivating the ARF-p53 axis in AML cells by targeting ULF.
    Chen D; Yoon JB; Gu W
    Cell Cycle; 2010 Aug; 9(15):2946-51. PubMed ID: 20699639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of HAUSP in vivo modulates p53 function.
    Kon N; Kobayashi Y; Li M; Brooks CL; Ludwig T; Gu W
    Oncogene; 2010 Mar; 29(9):1270-9. PubMed ID: 19946331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The HERC2 ubiquitin ligase is essential for embryonic development and regulates motor coordination.
    Cubillos-Rojas M; Schneider T; Hadjebi O; Pedrazza L; de Oliveira JR; Langa F; Guénet JL; Duran J; de Anta JM; Alcántara S; Ruiz R; Pérez-Villegas EM; Aguilar-Montilla FJ; Carrión ÁM; Armengol JA; Baple E; Crosby AH; Bartrons R; Ventura F; Rosa JL
    Oncotarget; 2016 Aug; 7(35):56083-56106. PubMed ID: 27528230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mouse models of Mdm2 and Mdm4 and their clinical implications.
    Xiong S
    Chin J Cancer; 2013 Jul; 32(7):371-5. PubMed ID: 23327795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATF4-mediated induction of 4E-BP1 contributes to pancreatic beta cell survival under endoplasmic reticulum stress.
    Yamaguchi S; Ishihara H; Yamada T; Tamura A; Usui M; Tominaga R; Munakata Y; Satake C; Katagiri H; Tashiro F; Aburatani H; Tsukiyama-Kohara K; Miyazaki J; Sonenberg N; Oka Y
    Cell Metab; 2008 Mar; 7(3):269-76. PubMed ID: 18316032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMI mediates transcription-independent ARF regulation in response to cellular stresses.
    Li Z; Hou J; Sun L; Wen T; Wang L; Zhao X; Xie Q; Zhang SQ
    Mol Biol Cell; 2012 Dec; 23(23):4635-46. PubMed ID: 23034180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcription-independent ARF regulation in oncogenic stress-mediated p53 responses.
    Chen D; Shan J; Zhu WG; Qin J; Gu W
    Nature; 2010 Mar; 464(7288):624-7. PubMed ID: 20208519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smad ubiquitylation regulatory factor 1/2 (Smurf1/2) promotes p53 degradation by stabilizing the E3 ligase MDM2.
    Nie J; Xie P; Liu L; Xing G; Chang Z; Yin Y; Tian C; He F; Zhang L
    J Biol Chem; 2010 Jul; 285(30):22818-30. PubMed ID: 20484049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small mitochondrial Arf (smArf) protein corrects p53-independent developmental defects of
    van Oosterwijk JG; Li C; Yang X; Opferman JT; Sherr CJ
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7420-7425. PubMed ID: 28652370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic roles of Mdm2 and Mdm4 for p53 inhibition in central nervous system development.
    Xiong S; Van Pelt CS; Elizondo-Fraire AC; Liu G; Lozano G
    Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3226-31. PubMed ID: 16492743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.