BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 22187484)

  • 1. Trapping of cis-2-butene-1,4-dial to measure furan metabolism in human liver microsomes by cytochrome P450 enzymes.
    Gates LA; Lu D; Peterson LA
    Drug Metab Dispos; 2012 Mar; 40(3):596-601. PubMed ID: 22187484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degraded protein adducts of cis-2-butene-1,4-dial are urinary and hepatocyte metabolites of furan.
    Lu D; Sullivan MM; Phillips MB; Peterson LA
    Chem Res Toxicol; 2009 Jun; 22(6):997-1007. PubMed ID: 19441776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutathione trapping to measure microsomal oxidation of furan to cis-2-butene-1,4-dial.
    Peterson LA; Cummings ME; Vu CC; Matter BA
    Drug Metab Dispos; 2005 Oct; 33(10):1453-8. PubMed ID: 16006568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of furan metabolites derived from cysteine-cis-2-butene-1,4-dial-lysine cross-links.
    Lu D; Peterson LA
    Chem Res Toxicol; 2010 Jan; 23(1):142-51. PubMed ID: 20043645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insight into the molecular mechanism of protein cross-linking induced by cis-2-butene-1,4-dial, the metabolite of furan: Formation of 2-substituted pyrrole cross-links involving the cysteine and lysine residues.
    Muńko M; Ciesielska K; Pluskota-Karwatka D
    Bioorg Chem; 2022 Aug; 125():105852. PubMed ID: 35551004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyamines are traps for reactive intermediates in furan metabolism.
    Peterson LA; Phillips MB; Lu D; Sullivan MM
    Chem Res Toxicol; 2011 Nov; 24(11):1924-36. PubMed ID: 21842885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of cis-2-butene-1,4-dial as a microsomal metabolite of furan.
    Chen LJ; Hecht SS; Peterson LA
    Chem Res Toxicol; 1995; 8(7):903-6. PubMed ID: 8555403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of amino acid and glutathione adducts of cis-2-butene-1,4-dial, a reactive metabolite of furan.
    Chen LJ; Hecht SS; Peterson LA
    Chem Res Toxicol; 1997 Aug; 10(8):866-74. PubMed ID: 9282835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of putative biomarkers of furan exposure through quantitative analysis of furan metabolites in urine of F344 rats exposed to stable isotope labeled furan.
    Kalisch C; Reiter M; Krieger M; Wüst L; Klotz C; Dekant R; Lachenmeier DW; Scherf-Clavel O; Mally A
    Arch Toxicol; 2024 Jun; 98(6):1741-1756. PubMed ID: 38573339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative metabolism of furan in rodent and human cryopreserved hepatocytes.
    Gates LA; Phillips MB; Matter BA; Peterson LA
    Drug Metab Dispos; 2014 Jul; 42(7):1132-6. PubMed ID: 24751574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abundant Rodent Furan-Derived Urinary Metabolites Are Associated with Tobacco Smoke Exposure in Humans.
    Grill AE; Schmitt T; Gates LA; Lu D; Bandyopadhyay D; Yuan JM; Murphy SE; Peterson LA
    Chem Res Toxicol; 2015 Jul; 28(7):1508-16. PubMed ID: 26114498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of 1,2-epoxy-3-butene to 1,2:3,4-diepoxybutane by cDNA-expressed human cytochromes P450 2E1 and 3A4 and human, mouse and rat liver microsomes.
    Seaton MJ; Follansbee MH; Bond JA
    Carcinogenesis; 1995 Oct; 16(10):2287-93. PubMed ID: 7586124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of the cellular effects of the high-dose, long-term exposure to coffee roasting product furan and its by-product
    Teodoro JS; Silva R; Aguiar A; Sobral AJFN; Rolo AP; Palmeira CM
    Toxicol Mech Methods; 2020 Sep; 30(7):536-545. PubMed ID: 32544017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hepatobiliary toxicity of furan: identification of furan metabolites in bile of male f344/n rats.
    Hamberger C; Kellert M; Schauer UM; Dekant W; Mally A
    Drug Metab Dispos; 2010 Oct; 38(10):1698-706. PubMed ID: 20639435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomonitoring of heat-induced food contaminants: Quantitative analysis of furan dependent glutathione- and lysine-adducts in rat urine as putative biomarkers of exposure.
    Karlstetter D; Mally A
    Food Chem Toxicol; 2020 Sep; 143():111562. PubMed ID: 32640330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome p450-mediated metabolic activation of diosbulbin B.
    Lin D; Li C; Peng Y; Gao H; Zheng J
    Drug Metab Dispos; 2014 Oct; 42(10):1727-36. PubMed ID: 25024403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of nucleoside adducts of cis-2-butene-1,4-dial, a reactive metabolite of furan.
    Byrns MC; Predecki DP; Peterson LA
    Chem Res Toxicol; 2002 Mar; 15(3):373-9. PubMed ID: 11896685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vitro and In Vivo Metabolic Activation of Obacunone, A Bioactive and Potentially Hepatotoxic Constituent of Dictamni Cortex.
    Lang X; Zhang X; Wang D; Zhou W
    Planta Med; 2020 Jul; 86(10):686-695. PubMed ID: 32365393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into the molecular mechanisms of chemical carcinogenesis: In vivo adduction of histone H2B by a reactive metabolite of the chemical carcinogen furan.
    Nunes J; Martins IL; Charneira C; Pogribny IP; de Conti A; Beland FA; Marques MM; Jacob CC; Antunes AMM
    Toxicol Lett; 2016 Dec; 264():106-113. PubMed ID: 27825936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biotransformation of isoprene and the two isoprene monoepoxides by human cytochrome P450 enzymes, compared to mouse and rat liver microsomes.
    Bogaards JJ; Venekamp JC; van Bladeren PJ
    Chem Biol Interact; 1996 Dec; 102(3):169-82. PubMed ID: 9021169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.