These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22187724)

  • 1. Atom probe tomography investigation of assisted precipitation of secondary hardening carbides in a medium carbon martensitic steels.
    Danoix F; Danoix R; Akre J; Grellier A; Delagnes D
    J Microsc; 2011 Dec; 244(3):305-10. PubMed ID: 22187724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The morphology of secondary-hardening carbides in a martensitic steel at the peak hardness by 3DFIM.
    Akré J; Danoix F; Leitner H; Auger P
    Ultramicroscopy; 2009 Apr; 109(5):518-23. PubMed ID: 19268459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructural evolution of a dual hardening steel during heat treatment.
    Hofinger M; Staudacher M; Ognianov M; Turk C; Leitner H; Schnitzer R
    Micron; 2019 May; 120():48-56. PubMed ID: 30772642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atom probe study of the carbon distribution in a hardened martensitic hot-work tool steel X38CrMoV5-1.
    Lerchbacher C; Zinner S; Leitner H
    Micron; 2012 Jul; 43(7):818-26. PubMed ID: 22391101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic scale investigation on the distribution of boron in medium carbon steels by atom probe tomography and EELS.
    Bok Seol J; Ho Gu G; Suk Lim N; Das S; Gyung Park C
    Ultramicroscopy; 2010 Jun; 110(7):783-8. PubMed ID: 20356677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional studies of intergranular carbides in austenitic stainless steel.
    Ochi M; Kawano R; Maeda T; Sato Y; Teranishi R; Hara T; Kikuchi M; Kaneko K
    Microscopy (Oxf); 2017 Apr; 66(2):89-94. PubMed ID: 27927874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atom probe tomography characterization of solute segregation to dislocations.
    Miller MK
    Microsc Res Tech; 2006 May; 69(5):359-65. PubMed ID: 16646009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precipitation evolution in a Ti-free and Ti-containing stainless maraging steel.
    Schober M; Schnitzer R; Leitner H
    Ultramicroscopy; 2009 Apr; 109(5):553-62. PubMed ID: 19100688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined nano-SIMS/AFM/EBSD analysis and atom probe tomography, of carbon distribution in austenite/ε-martensite high-Mn steels.
    Seol JB; Lee BH; Choi P; Lee SG; Park CG
    Ultramicroscopy; 2013 Sep; 132():248-57. PubMed ID: 23537886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study on the effects of Cr, V, and Mo carbides for hydrogen-embrittlement resistance of tempered martensitic steel.
    Lee J; Lee T; Mun DJ; Bae CM; Lee CS
    Sci Rep; 2019 Mar; 9(1):5219. PubMed ID: 30914723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbide Precipitation during Tempering and Its Effect on the Wear Loss of a High-Carbon 8 Mass% Cr Tool Steel.
    Li S; Xi X; Luo Y; Mao M; Shi X; Guo J; Guo H
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30544587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic scale investigation of non-equilibrium segregation of boron in a quenched Mo-free martensitic steel.
    Li YJ; Ponge D; Choi P; Raabe D
    Ultramicroscopy; 2015 Dec; 159 Pt 2():240-7. PubMed ID: 25801276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comparison Study on the Strengthening and Toughening Mechanism between Cu-Bearing Age-Hardening Steel and NiCrMoV Steel.
    Luo X; Xiang C; Chai F; Wang Z; Zhang Z; Ding H
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale.
    Hossain R; Pahlevani F; Quadir MZ; Sahajwalla V
    Sci Rep; 2016 Oct; 6():34958. PubMed ID: 27725722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification, size classification and evolution of Laves phase precipitates in high chromium, fully ferritic steels.
    Lopez Barrilao J; Kuhn B; Wessel E
    Micron; 2017 Oct; 101():221-231. PubMed ID: 28825996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of carbide precipitate morphology on fracture toughness in low-tempered steels containing Ni.
    Krawczyk J; Bała P; Pacyna J
    J Microsc; 2010 Mar; 237(3):411-5. PubMed ID: 20500408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants.
    Abe F
    Sci Technol Adv Mater; 2008 Jan; 9(1):013002. PubMed ID: 27877920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure evolution and dislocation behaviour in high chromium, fully ferritic steels strengthened by intermetallic Laves phases.
    Lopez Barrilao J; Kuhn B; Wessel E
    Micron; 2018 May; 108():11-18. PubMed ID: 29544163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of undissolved Nb carbides on mechanical properties of hydrogen-precharged tempered martensitic steel.
    Seo HJ; Jo JW; Kim JN; Kwon K; Lee J; Choi S; Lee T; Lee CS
    Sci Rep; 2020 Jul; 10(1):11704. PubMed ID: 32678163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atom Probe Compositional Analysis of Interphase Precipitated Nano-Sized Alloy Carbide in Multiple Microalloyed Low-Carbon Steels.
    Zhang Y; Miyamoto G; Furuhara T
    Microsc Microanal; 2019 Apr; 25(2):447-453. PubMed ID: 30417802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.