BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 22187733)

  • 1. A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M = Ni, Co, or Fe).
    Duan Z; Wang G
    Phys Chem Chem Phys; 2011 Dec; 13(45):20178-87. PubMed ID: 22187733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and theoretical investigation of the stability of Pt-3d-Pt(111) bimetallic surfaces under oxygen environment.
    Menning CA; Hwu HH; Chen JG
    J Phys Chem B; 2006 Aug; 110(31):15471-7. PubMed ID: 16884269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights into the effects of alloying Pt with Ni on oxygen reduction reaction mechanisms in acid medium: a first-principles study.
    Ou LH
    J Mol Model; 2015 Nov; 21(11):281. PubMed ID: 26450348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing oxygen reduction reaction activity of Pt-shelled catalysts via subsurface alloying.
    Cheng D; Qiu X; Yu H
    Phys Chem Chem Phys; 2014 Oct; 16(38):20377-81. PubMed ID: 25144838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beneficial compressive strain for oxygen reduction reaction on Pt (111) surface.
    Kattel S; Wang G
    J Chem Phys; 2014 Sep; 141(12):124713. PubMed ID: 25273467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT studies of hydrocarbon combustion on metal surfaces.
    Arya M; Mirzaei AA; Davarpanah AM; Barakati SM; Atashi H; Mohsenzadeh A; Bolton K
    J Mol Model; 2018 Feb; 24(2):47. PubMed ID: 29396776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical insights on the catalytic activity and mechanism for oxygen reduction reaction at Fe and P codoped graphene.
    He F; Li K; Xie G; Wang Y; Jiao M; Tang H; Wu Z
    Phys Chem Chem Phys; 2016 May; 18(18):12675-81. PubMed ID: 27094325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DFT insights into oxygen vacancy formation and CH
    Tian D; Li K; Wei Y; Zhu X; Zeng C; Cheng X; Zheng Y; Wang H
    Phys Chem Chem Phys; 2018 May; 20(17):11912-11929. PubMed ID: 29666863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio GGA+U study of oxygen evolution and oxygen reduction electrocatalysis on the (001) surfaces of lanthanum transition metal perovskites LaBO₃ (B = Cr, Mn, Fe, Co and Ni).
    Lee YL; Gadre MJ; Shao-Horn Y; Morgan D
    Phys Chem Chem Phys; 2015 Sep; 17(33):21643-63. PubMed ID: 26227442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trends in water-promoted oxygen dissociation on the transition metal surfaces from first principles.
    Yan M; Huang ZQ; Zhang Y; Chang CR
    Phys Chem Chem Phys; 2017 Jan; 19(3):2364-2371. PubMed ID: 28054681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving electrocatalysts for O(2) reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd(3)Fe(111) single-crystal alloy.
    Zhou WP; Yang X; Vukmirovic MB; Koel BE; Jiao J; Peng G; Mavrikakis M; Adzic RR
    J Am Chem Soc; 2009 Sep; 131(35):12755-62. PubMed ID: 19722720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces.
    Stamenkovic VR; Mun BS; Mayrhofer KJ; Ross PN; Markovic NM
    J Am Chem Soc; 2006 Jul; 128(27):8813-9. PubMed ID: 16819874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Synthesis of Quaternary Structurally Ordered L1
    Wang S; Luo Q; Zhu Y; Tang S; Du Y
    ACS Omega; 2019 Oct; 4(18):17894-17902. PubMed ID: 31681899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the activity of transition metal M and heteroatom N
    Yang S; Zhao C; Qu R; Cheng Y; Liu H; Huang X
    RSC Adv; 2021 Jan; 11(5):3174-3182. PubMed ID: 35424237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A first-principle calculation of sulfur oxidation on metallic Ni(111) and Pt(111), and bimetallic Ni@Pt(111) and Pt@Ni(111) surfaces.
    Yeh CH; Ho JJ
    Chemphyschem; 2012 Sep; 13(13):3194-203. PubMed ID: 22740096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Face-centered tetragonal (FCT) Fe and Co alloys of Pt as catalysts for the oxygen reduction reaction (ORR): A DFT study.
    Sharma S; Zeng C; Peterson AA
    J Chem Phys; 2019 Jan; 150(4):041704. PubMed ID: 30709250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature dependence of oxygen reduction activity at Pt-Fe, Pt-Co, and Pt-Ni alloy electrodes.
    Wakabayashi N; Takeichi M; Uchida H; Watanabe M
    J Phys Chem B; 2005 Mar; 109(12):5836-41. PubMed ID: 16851636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of electronic structures of Pt3M (M=Ti,V,Cr,Fe,Co,Ni) polycrystalline alloys with valence-band photoemission spectroscopy.
    Mun BS; Watanabe M; Rossi M; Stamenkovic V; Markovic NM; Ross PN
    J Chem Phys; 2005 Nov; 123(20):204717. PubMed ID: 16351303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergetic effect of surface and subsurface Ni species at Pt-Ni bimetallic catalysts for CO oxidation.
    Mu R; Fu Q; Xu H; Zhang H; Huang Y; Jiang Z; Zhang S; Tan D; Bao X
    J Am Chem Soc; 2011 Feb; 133(6):1978-86. PubMed ID: 21247156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt3M (where M = 3d transition metals) alloy catalyst from first-principles.
    Kim CE; Lim DH; Jang JH; Kim HJ; Yoon SP; Han J; Nam SW; Hong SA; Soon A; Ham HC
    J Chem Phys; 2015 Jan; 142(3):034707. PubMed ID: 25612725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.