BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 22188019)

  • 1. Oxidative stress induces unfolding protein response and inflammation in nasal polyposis.
    Jeanson L; Kelly M; Coste A; Guerrera IC; Fritsch J; Nguyen-Khoa T; Baudouin-Legros M; Papon JF; Zadigue P; Prulière-Escabasse V; Amselem S; Escudier E; Edelman A
    Allergy; 2012 Mar; 67(3):403-12. PubMed ID: 22188019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene expression profiles of nasal polyps associated with allergic rhinitis.
    Wu J; Bing L; Jin H; Jingping F
    Am J Otolaryngol; 2009; 30(1):24-32. PubMed ID: 19027509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Eosinophil activation by epithelial cells of the respiratory mucosa. Comparative study of normal mucosa and inflammatory mucosa].
    Mullol J; Xaubet A; López E; Roca-Ferrer J; Carrión T; Roselló-Catafau J; Picado C
    Med Clin (Barc); 1997 May; 109(1):6-11. PubMed ID: 9303983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Airway inflammation in nasal polyposis: immunopathological aspects of relation to asthma.
    Ediger D; Sin BA; Heper A; Anadolu Y; Misirligil Z
    Clin Exp Allergy; 2005 Mar; 35(3):319-26. PubMed ID: 15784110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proinflammatory impact of Staphylococcus epidermidis on the nasal epithelium quantified by IL-8 and GRO-alpha responses in primary human nasal epithelial cells.
    Sachse F; von Eiff C; Becker K; Steinhoff M; Rudack C
    Int Arch Allergy Immunol; 2008; 145(1):24-32. PubMed ID: 17703097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of SPLUNC1 protein in nasal polyp epithelial cells in air-liquid interface culture treated with IL-13.
    Yeh TH; Lee SY; Hsu WC
    Am J Rhinol Allergy; 2010; 24(1):17-20. PubMed ID: 20109312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microarray gene analysis of Toll-like receptor signaling elements in chronic rhinosinusitis with nasal polyps.
    Zhao CY; Wang X; Liu M; Jin DJ
    Int Arch Allergy Immunol; 2011; 156(3):297-304. PubMed ID: 21720175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HLA class II antigens and T lymphocytes in human nasal epithelial cells. Modulation of the HLA class II gene transcripts by gamma interferon.
    Wang D; Levasseur-Acker GM; Jankowski R; Kanny G; Moneret-Vautrin DA; Charron D; Lockhart A; Swierczewski E
    Clin Exp Allergy; 1997 Mar; 27(3):306-14. PubMed ID: 9088657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pathogenesis of nasal polyposis by immunoglobulin E and interleukin-5 is completed by transforming growth factor-beta1.
    Hirschberg A; Jókúti A; Darvas Z; Almay K; Répássy G; Falus A
    Laryngoscope; 2003 Jan; 113(1):120-4. PubMed ID: 12514394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial expression of two anti-inflammatory mediators, annexin 1 and galectin-1, in nasal polyposis.
    Sena AA; Provazzi PJ; Fernandes AM; Cury PM; Rahal P; Oliani SM
    Clin Exp Allergy; 2006 Oct; 36(10):1260-7. PubMed ID: 17014434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Asian sand dust on mucin gene expression and activation of nasal polyp epithelial cells.
    Kim ST; Ye MK; Shin SH
    Am J Rhinol Allergy; 2011; 25(5):303-6. PubMed ID: 22186242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary human sinonasal epithelial cell culture model for topical drug delivery in patients with chronic rhinosinusitis with nasal polyposis.
    Bleier BS; Mulligan RM; Schlosser RJ
    J Pharm Pharmacol; 2012 Mar; 64(3):449-56. PubMed ID: 22309277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interleukin-10 blocked endoplasmic reticulum stress in intestinal epithelial cells: impact on chronic inflammation.
    Shkoda A; Ruiz PA; Daniel H; Kim SC; Rogler G; Sartor RB; Haller D
    Gastroenterology; 2007 Jan; 132(1):190-207. PubMed ID: 17241871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prostaglandin, leukotriene, and lipoxin balance in chronic rhinosinusitis with and without nasal polyposis.
    Pérez-Novo CA; Watelet JB; Claeys C; Van Cauwenberge P; Bachert C
    J Allergy Clin Immunol; 2005 Jun; 115(6):1189-96. PubMed ID: 15940133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nasal interleukin-5, immunoglobulin E, eosinophilic cationic protein, and soluble intercellular adhesion molecule-1 in chronic sinusitis, allergic rhinitis, and nasal polyposis.
    Kramer MF; Ostertag P; Pfrogner E; Rasp G
    Laryngoscope; 2000 Jun; 110(6):1056-62. PubMed ID: 10852530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of the proinflammatory cytokine IL-18 in the formation of human nasal polyps.
    Zhang G; Jing X; Wang X; Shi W; Sun P; Su C; Zhu M; Yang Z; Yao Z; Yang J
    Anat Rec (Hoboken); 2011 Jun; 294(6):953-60. PubMed ID: 21538928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of Toll-like receptors in cultured nasal epithelial cells.
    Lin CF; Tsai CH; Cheng CH; Chen YS; Tournier F; Yeh TH
    Acta Otolaryngol; 2007 Apr; 127(4):395-402. PubMed ID: 17453460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oral steroids enhance epithelial repair in nasal polyposis via upregulation of the AP-1 gene network.
    Li CW; Cheung W; Lin ZB; Li TY; Lim JT; Wang DY
    Thorax; 2009 Apr; 64(4):306-12. PubMed ID: 19158123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dexamethasone-induced apoptosis of freshly isolated human nasal epithelial cells concomitant with abrogation of IL-8 production.
    Bobic S; van Drunen CM; Callebaut I; Hox V; Jorissen M; Fokkens WJ; Hellings PW
    Rhinology; 2010 Dec; 48(4):401-7. PubMed ID: 21442075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of glutaredoxin-1 in nasal polyps and airway epithelial cells.
    Woo HJ; Bae CH; Song SY; Kim YW; Lee HM; Kim YD
    Am J Rhinol Allergy; 2009; 23(3):288-93. PubMed ID: 19490803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.