These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 22188384)

  • 61. Expression of heterologous transporters in Saccharomyces kudriavzevii: A strategy for improving yeast salt tolerance and fermentation performance.
    Dibalova-Culakova H; Alonso-Del-Real J; Querol A; Sychrova H
    Int J Food Microbiol; 2018 Mar; 268():27-34. PubMed ID: 29324287
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Restored Physiology in Protein-Deficient Yeast by a Small Molecule Channel.
    Cioffi AG; Hou J; Grillo AS; Diaz KA; Burke MD
    J Am Chem Soc; 2015 Aug; 137(32):10096-9. PubMed ID: 26230309
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Finding time: a daily clock in yeast.
    Merrow M; Raven M
    Cell Cycle; 2010 May; 9(9):1671-2. PubMed ID: 20404503
    [No Abstract]   [Full Text] [Related]  

  • 64. Investigation the global effect of rare earth gadolinium on the budding
    Cao Y; Zhang C; Fang Y; Liu Y; Lyu K; Ding J; Wang X
    Front Microbiol; 2022; 13():1022054. PubMed ID: 36519157
    [TBL] [Abstract][Full Text] [Related]  

  • 65. BioPhotonics workstation: a versatile setup for simultaneous optical manipulation, heat stress, and intracellular pH measurements of a live yeast cell.
    Aabo T; Banás AR; Glückstad J; Siegumfeldt H; Arneborg N
    Rev Sci Instrum; 2011 Aug; 82(8):083707. PubMed ID: 21895251
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Correction: ARFRP1 functions upstream of ARL1 and ARL5 to coordinate recruitment of tethering factors to the trans-Golgi network.
    Ishida M; Bonifacino JS
    J Cell Biol; 2019 Nov; 218(11):3880-3881. PubMed ID: 31604800
    [No Abstract]   [Full Text] [Related]  

  • 67. Structural basis for targeting BIG1 to Golgi apparatus through interaction of its DCB domain with Arl1.
    Wang R; Wang Z; Wang K; Zhang T; Ding J
    J Mol Cell Biol; 2016 Oct; 8(5):459-461. PubMed ID: 27436755
    [No Abstract]   [Full Text] [Related]  

  • 68. The Small GTPases in Fungal Signaling Conservation and Function.
    Dautt-Castro M; Rosendo-Vargas M; Casas-Flores S
    Cells; 2021 Apr; 10(5):. PubMed ID: 33924947
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Dissection of differential vanadate sensitivity in two Ogataea species links protein glycosylation and phosphate transport regulation.
    Karginov AV; Fokina AV; Kang HA; Kalebina TS; Sabirzyanova TA; Ter-Avanesyan MD; Agaphonov MO
    Sci Rep; 2018 Nov; 8(1):16428. PubMed ID: 30401924
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Overexpression of
    Wakade R; Labbaoui H; Stalder D; Arkowitz RA; Bassilana M
    Small GTPases; 2020 May; 11(3):204-210. PubMed ID: 28960163
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Role of Arf GTPases in fungal morphogenesis and virulence.
    Labbaoui H; Bogliolo S; Ghugtyal V; Solis NV; Filler SG; Arkowitz RA; Bassilana M
    PLoS Pathog; 2017 Feb; 13(2):e1006205. PubMed ID: 28192532
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Overexpressing target helper genes enhances secretion and glycosylation of recombinant proteins in Pichia pastoris under simulated microgravity.
    Huangfu J; Xu Y; Li C; Li J
    J Ind Microbiol Biotechnol; 2016 Oct; 43(10):1429-39. PubMed ID: 27535143
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species.
    Schmoll M; Dattenböck C; Carreras-Villaseñor N; Mendoza-Mendoza A; Tisch D; Alemán MI; Baker SE; Brown C; Cervantes-Badillo MG; Cetz-Chel J; Cristobal-Mondragon GR; Delaye L; Esquivel-Naranjo EU; Frischmann A; Gallardo-Negrete Jde J; García-Esquivel M; Gomez-Rodriguez EY; Greenwood DR; Hernández-Oñate M; Kruszewska JS; Lawry R; Mora-Montes HM; Muñoz-Centeno T; Nieto-Jacobo MF; Nogueira Lopez G; Olmedo-Monfil V; Osorio-Concepcion M; Piłsyk S; Pomraning KR; Rodriguez-Iglesias A; Rosales-Saavedra MT; Sánchez-Arreguín JA; Seidl-Seiboth V; Stewart A; Uresti-Rivera EE; Wang CL; Wang TF; Zeilinger S; Casas-Flores S; Herrera-Estrella A
    Microbiol Mol Biol Rev; 2016 Mar; 80(1):205-327. PubMed ID: 26864432
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Transcriptome analysis of Portunus trituberculatus in response to salinity stress provides insights into the molecular basis of osmoregulation.
    Lv J; Liu P; Wang Y; Gao B; Chen P; Li J
    PLoS One; 2013; 8(12):e82155. PubMed ID: 24312639
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comparison of the influence of small GTPases Arl1 and Ypt6 on yeast cells' tolerance to various stress factors.
    Marešová L; Vydarený T; Sychrová H
    FEMS Yeast Res; 2012 May; 12(3):332-40. PubMed ID: 22188384
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Yeast ARL1 encodes a regulator of K+ influx.
    Munson AM; Haydon DH; Love SL; Fell GL; Palanivel VR; Rosenwald AG
    J Cell Sci; 2004 May; 117(Pt 11):2309-20. PubMed ID: 15126631
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Genetic interactions among the Arl1 GTPase and intracellular Na(+) /H(+) antiporters in pH homeostasis and cation detoxification.
    Marešová L; Sychrová H
    FEMS Yeast Res; 2010 Nov; 10(7):802-11. PubMed ID: 20659170
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The yeast genes, ARL1 and CCZ1, interact to control membrane traffic and ion homeostasis.
    Love SL; Manlandro CM; Testa CJ; Thomas AE; Tryggestad KE; Rosenwald AG
    Biochem Biophys Res Commun; 2004 Jul; 319(3):840-6. PubMed ID: 15184059
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Small GTPase proteins in macroautophagy.
    Yang S; Rosenwald A
    Small GTPases; 2018 Sep; 9(5):409-414. PubMed ID: 27763811
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.