These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 22188408)
1. Development of a physiologically based pharmacokinetic model for inhalation of jet fuels in the rat. Martin SA; Campbell JL; Tremblay RT; Fisher JW Inhal Toxicol; 2012 Jan; 24(1):1-26. PubMed ID: 22188408 [TBL] [Abstract][Full Text] [Related]
2. JP-8 jet fuel can promote auditory impairment resulting from subsequent noise exposure in rats. Fechter LD; Gearhart C; Fulton S; Campbell J; Fisher J; Na K; Cocker D; Nelson-Miller A; Moon P; Pouyatos B Toxicol Sci; 2007 Aug; 98(2):510-25. PubMed ID: 17483120 [TBL] [Abstract][Full Text] [Related]
3. Biological and health effects of exposure to kerosene-based jet fuels and performance additives. Ritchie G; Still K; Rossi J; Bekkedal M; Bobb A; Arfsten D J Toxicol Environ Health B Crit Rev; 2003; 6(4):357-451. PubMed ID: 12775519 [TBL] [Abstract][Full Text] [Related]
4. Characterization of a nose-only inhalation exposure system for hydrocarbon mixtures and jet fuels. Martin SA; Tremblay RT; Brunson KF; Kendrick C; Fisher JW Inhal Toxicol; 2010 Apr; 22(5):382-93. PubMed ID: 20109056 [TBL] [Abstract][Full Text] [Related]
5. Partition coefficients for nonane and its isomers in the rat. Joshi G; Tremblay RT; Martin SA; Fisher JW Toxicol Mech Methods; 2010 Nov; 20(9):594-9. PubMed ID: 20919799 [TBL] [Abstract][Full Text] [Related]
6. A PBPK modeling assessment of the competitive metabolic interactions of JP-8 vapor with two constituents, m-xylene and ethylbenzene. Campbell JL; Fisher JW Inhal Toxicol; 2007 Mar; 19(3):265-73. PubMed ID: 17365029 [TBL] [Abstract][Full Text] [Related]
7. Metabolites from inhalation of aerosolized S-8 synthetic jet fuel in rats. Tremblay RT; Martin SA; Fisher JW Inhal Toxicol; 2011 Jan; 23(1):11-6. PubMed ID: 21222558 [TBL] [Abstract][Full Text] [Related]
8. Model studies for evaluating the neurobehavioral effects of complex hydrocarbon solvents III. PBPK modeling of white spirit constituents as a tool for integrating animal and human test data. Hissink AM; Krüse J; Kulig BM; Verwei M; Muijser H; Salmon F; Leenheers LH; Owen DE; Lammers JH; Freidig AP; McKee RH Neurotoxicology; 2007 Jul; 28(4):751-60. PubMed ID: 17493682 [TBL] [Abstract][Full Text] [Related]
10. In vitro rat hepatic metabolism of n-alkanes: nonane, decane, and tetradecane. Anand SS; Campbell JL; Fisher JW Int J Toxicol; 2007; 26(4):325-9. PubMed ID: 17661223 [TBL] [Abstract][Full Text] [Related]
11. Repeated aerosol-vapor JP-8 jet fuel exposure affects neurobehavior and neurotransmitter levels in a rat model. Baldwin CM; Figueredo AJ; Wright LS; Wong SS; Witten ML J Toxicol Environ Health A; 2007 Jul; 70(14):1203-13. PubMed ID: 17573634 [TBL] [Abstract][Full Text] [Related]
12. A comparison of physiologically based pharmacokinetic model predictions and experimental data for inhaled ethanol in male and female B6C3F1 mice, F344 rats, and humans. Pastino GM; Asgharian B; Roberts K; Medinsky MA; Bond JA Toxicol Appl Pharmacol; 1997 Jul; 145(1):147-57. PubMed ID: 9221833 [TBL] [Abstract][Full Text] [Related]
13. Development of a physiologically based pharmacokinetic model for decane, a constituent of jet propellent-8. Perleberg UR; Keys DA; Fisher JW Inhal Toxicol; 2004; 16(11-12):771-83. PubMed ID: 16036747 [TBL] [Abstract][Full Text] [Related]
14. Use of a physiologically based model to predict systemic uptake and respiratory elimination of perchloroethylene. Dallas CE; Muralidhara S; Chen XM; Ramanathan R; Varkonyi P; Gallo JM; Bruckner JV Toxicol Appl Pharmacol; 1994 Sep; 128(1):60-8. PubMed ID: 8079355 [TBL] [Abstract][Full Text] [Related]
15. Manganese tissue dosimetry in rats and monkeys: accounting for dietary and inhaled Mn with physiologically based pharmacokinetic modeling. Nong A; Taylor MD; Clewell HJ; Dorman DC; Andersen ME Toxicol Sci; 2009 Mar; 108(1):22-34. PubMed ID: 19098275 [TBL] [Abstract][Full Text] [Related]
16. Toxicology and carcinogenesis studies of tetralin (CAS No. 119-64-2) in F344/N rats and B6C3F1 mice (inhalation studies). National Toxicology Program Natl Toxicol Program Tech Rep Ser; 2011 Apr; (561):1-198. PubMed ID: 21685956 [TBL] [Abstract][Full Text] [Related]
17. Mixture effects of JP-8 additives on the dermal disposition of jet fuel components. Baynes RE; Brooks JD; Budsaba K; Smith CE; Riviere JE Toxicol Appl Pharmacol; 2001 Sep; 175(3):269-81. PubMed ID: 11559026 [TBL] [Abstract][Full Text] [Related]
18. Ototoxic potential of JP-8 and a Fischer-Tropsch synthetic jet fuel following subacute inhalation exposure in rats. Fechter LD; Gearhart CA; Fulton S Toxicol Sci; 2010 Jul; 116(1):239-48. PubMed ID: 20378580 [TBL] [Abstract][Full Text] [Related]
19. A spreadsheet program for modeling quantitative structure-pharmacokinetic relationships for inhaled volatile organics in humans. Béliveau M; Krishnan K SAR QSAR Environ Res; 2005; 16(1-2):63-77. PubMed ID: 15844443 [TBL] [Abstract][Full Text] [Related]
20. Analysis of algorithms predicting blood:air and tissue:blood partition coefficients from solvent partition coefficients for prevalent components of JP-8 jet fuel. Sterner TR; Goodyear CD; Robinson PJ; Mattie DR; Burton GA J Toxicol Environ Health A; 2006 Aug; 69(15):1441-79. PubMed ID: 16766479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]