BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22188408)

  • 1. Development of a physiologically based pharmacokinetic model for inhalation of jet fuels in the rat.
    Martin SA; Campbell JL; Tremblay RT; Fisher JW
    Inhal Toxicol; 2012 Jan; 24(1):1-26. PubMed ID: 22188408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. JP-8 jet fuel can promote auditory impairment resulting from subsequent noise exposure in rats.
    Fechter LD; Gearhart C; Fulton S; Campbell J; Fisher J; Na K; Cocker D; Nelson-Miller A; Moon P; Pouyatos B
    Toxicol Sci; 2007 Aug; 98(2):510-25. PubMed ID: 17483120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological and health effects of exposure to kerosene-based jet fuels and performance additives.
    Ritchie G; Still K; Rossi J; Bekkedal M; Bobb A; Arfsten D
    J Toxicol Environ Health B Crit Rev; 2003; 6(4):357-451. PubMed ID: 12775519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a nose-only inhalation exposure system for hydrocarbon mixtures and jet fuels.
    Martin SA; Tremblay RT; Brunson KF; Kendrick C; Fisher JW
    Inhal Toxicol; 2010 Apr; 22(5):382-93. PubMed ID: 20109056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partition coefficients for nonane and its isomers in the rat.
    Joshi G; Tremblay RT; Martin SA; Fisher JW
    Toxicol Mech Methods; 2010 Nov; 20(9):594-9. PubMed ID: 20919799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A PBPK modeling assessment of the competitive metabolic interactions of JP-8 vapor with two constituents, m-xylene and ethylbenzene.
    Campbell JL; Fisher JW
    Inhal Toxicol; 2007 Mar; 19(3):265-73. PubMed ID: 17365029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolites from inhalation of aerosolized S-8 synthetic jet fuel in rats.
    Tremblay RT; Martin SA; Fisher JW
    Inhal Toxicol; 2011 Jan; 23(1):11-6. PubMed ID: 21222558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model studies for evaluating the neurobehavioral effects of complex hydrocarbon solvents III. PBPK modeling of white spirit constituents as a tool for integrating animal and human test data.
    Hissink AM; Krüse J; Kulig BM; Verwei M; Muijser H; Salmon F; Leenheers LH; Owen DE; Lammers JH; Freidig AP; McKee RH
    Neurotoxicology; 2007 Jul; 28(4):751-60. PubMed ID: 17493682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro rat hepatic metabolism of n-alkanes: nonane, decane, and tetradecane.
    Anand SS; Campbell JL; Fisher JW
    Int J Toxicol; 2007; 26(4):325-9. PubMed ID: 17661223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repeated aerosol-vapor JP-8 jet fuel exposure affects neurobehavior and neurotransmitter levels in a rat model.
    Baldwin CM; Figueredo AJ; Wright LS; Wong SS; Witten ML
    J Toxicol Environ Health A; 2007 Jul; 70(14):1203-13. PubMed ID: 17573634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of physiologically based pharmacokinetic model predictions and experimental data for inhaled ethanol in male and female B6C3F1 mice, F344 rats, and humans.
    Pastino GM; Asgharian B; Roberts K; Medinsky MA; Bond JA
    Toxicol Appl Pharmacol; 1997 Jul; 145(1):147-57. PubMed ID: 9221833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a physiologically based pharmacokinetic model for decane, a constituent of jet propellent-8.
    Perleberg UR; Keys DA; Fisher JW
    Inhal Toxicol; 2004; 16(11-12):771-83. PubMed ID: 16036747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of a physiologically based model to predict systemic uptake and respiratory elimination of perchloroethylene.
    Dallas CE; Muralidhara S; Chen XM; Ramanathan R; Varkonyi P; Gallo JM; Bruckner JV
    Toxicol Appl Pharmacol; 1994 Sep; 128(1):60-8. PubMed ID: 8079355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manganese tissue dosimetry in rats and monkeys: accounting for dietary and inhaled Mn with physiologically based pharmacokinetic modeling.
    Nong A; Taylor MD; Clewell HJ; Dorman DC; Andersen ME
    Toxicol Sci; 2009 Mar; 108(1):22-34. PubMed ID: 19098275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicology and carcinogenesis studies of tetralin (CAS No. 119-64-2) in F344/N rats and B6C3F1 mice (inhalation studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 2011 Apr; (561):1-198. PubMed ID: 21685956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixture effects of JP-8 additives on the dermal disposition of jet fuel components.
    Baynes RE; Brooks JD; Budsaba K; Smith CE; Riviere JE
    Toxicol Appl Pharmacol; 2001 Sep; 175(3):269-81. PubMed ID: 11559026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ototoxic potential of JP-8 and a Fischer-Tropsch synthetic jet fuel following subacute inhalation exposure in rats.
    Fechter LD; Gearhart CA; Fulton S
    Toxicol Sci; 2010 Jul; 116(1):239-48. PubMed ID: 20378580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A spreadsheet program for modeling quantitative structure-pharmacokinetic relationships for inhaled volatile organics in humans.
    Béliveau M; Krishnan K
    SAR QSAR Environ Res; 2005; 16(1-2):63-77. PubMed ID: 15844443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of algorithms predicting blood:air and tissue:blood partition coefficients from solvent partition coefficients for prevalent components of JP-8 jet fuel.
    Sterner TR; Goodyear CD; Robinson PJ; Mattie DR; Burton GA
    J Toxicol Environ Health A; 2006 Aug; 69(15):1441-79. PubMed ID: 16766479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.