These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 22188451)

  • 41. Impaired proteostasis during skeletal muscle aging.
    Fernando R; Drescher C; Nowotny K; Grune T; Castro JP
    Free Radic Biol Med; 2019 Feb; 132():58-66. PubMed ID: 30194981
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of the ubiquitin-proteasome system in brain ischemia: friend or foe?
    Caldeira MV; Salazar IL; Curcio M; Canzoniero LM; Duarte CB
    Prog Neurobiol; 2014 Jan; 112():50-69. PubMed ID: 24157661
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The ubiquitin proteasome system as a potential therapeutic target for treatment of neurodegenerative diseases.
    Opattova A; Cente M; Novak M; Filipcik P
    Gen Physiol Biophys; 2015 Oct; 34(4):337-52. PubMed ID: 26221742
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Peptides that activate the 20S proteasome by gate opening increased oxidized protein removal and reduced protein aggregation.
    Dal Vechio FH; Cerqueira F; Augusto O; Lopes R; Demasi M
    Free Radic Biol Med; 2014 Feb; 67():304-13. PubMed ID: 24291399
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein oxidation, repair mechanisms and proteolysis in Saccharomyces cerevisiae.
    Costa V; Quintanilha A; Moradas-Ferreira P
    IUBMB Life; 2007; 59(4-5):293-8. PubMed ID: 17505968
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The proteasomal system.
    Jung T; Catalgol B; Grune T
    Mol Aspects Med; 2009 Aug; 30(4):191-296. PubMed ID: 19371762
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Redox control of the ubiquitin-proteasome system: from molecular mechanisms to functional significance.
    Kriegenburg F; Poulsen EG; Koch A; Krüger E; Hartmann-Petersen R
    Antioxid Redox Signal; 2011 Oct; 15(8):2265-99. PubMed ID: 21314436
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lower expression of catalytic and structural subunits of the proteasome contributes to decreased proteolysis in peripheral blood T lymphocytes during aging.
    Ponnappan S; Ovaa H; Ponnappan U
    Int J Biochem Cell Biol; 2007; 39(4):799-809. PubMed ID: 17317272
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Removal of oxidatively damaged proteins from lens cells by the ubiquitin-proteasome pathway.
    Shang F; Nowell TR; Taylor A
    Exp Eye Res; 2001 Aug; 73(2):229-38. PubMed ID: 11446773
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Changes of the proteasomal system during the aging process.
    Baraibar MA; Friguet B
    Prog Mol Biol Transl Sci; 2012; 109():249-75. PubMed ID: 22727424
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Proteolytic degradation of heat shock protein A2 occurs in response to oxidative stress in male germ cells of the mouse.
    Bromfield EG; Aitken RJ; McLaughlin EA; Nixon B
    Mol Hum Reprod; 2017 Feb; 23(2):91-105. PubMed ID: 27932549
    [TBL] [Abstract][Full Text] [Related]  

  • 52. We Are What We Eat: Ubiquitin-Proteasome System (UPS) Modulation Through Dietary Products.
    Panagiotidou E; Chondrogianni N
    Adv Exp Med Biol; 2020; 1233():329-348. PubMed ID: 32274765
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of ubiquitin-proteasome system in ageing.
    Löw P
    Gen Comp Endocrinol; 2011 May; 172(1):39-43. PubMed ID: 21324320
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oxidative distress in aging and age-related diseases: Spatiotemporal dysregulation of protein oxidation and degradation.
    Zavadskiy S; Sologova S; Moldogazieva N
    Biochimie; 2022 Apr; 195():114-134. PubMed ID: 34890732
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proteasome regulation of oxidative stress in aging and age-related diseases of the CNS.
    Ding Q; Dimayuga E; Keller JN
    Antioxid Redox Signal; 2006; 8(1-2):163-72. PubMed ID: 16487050
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ubiquitin C-Terminal Hydrolase L1 is required for regulated protein degradation through the ubiquitin proteasome system in kidney.
    Radón V; Czesla M; Reichelt J; Fehlert J; Hammel A; Rosendahl A; Knop JH; Wiech T; Wenzel UO; Sachs M; Reinicke AT; Stahl RAK; Meyer-Schwesinger C
    Kidney Int; 2018 Jan; 93(1):110-127. PubMed ID: 28754552
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Redox modulation of cellular metabolism through targeted degradation of signaling proteins by the proteasome.
    Squier TC
    Antioxid Redox Signal; 2006; 8(1-2):217-28. PubMed ID: 16487055
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proteins in aggregates functionally impact multiple neurodegenerative disease models by forming proteasome-blocking complexes.
    Ayyadevara S; Balasubramaniam M; Gao Y; Yu LR; Alla R; Shmookler Reis R
    Aging Cell; 2015 Feb; 14(1):35-48. PubMed ID: 25510159
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pathophysiological importance of aggregated damaged proteins.
    Höhn A; Jung T; Grune T
    Free Radic Biol Med; 2014 Jun; 71():70-89. PubMed ID: 24632383
    [TBL] [Abstract][Full Text] [Related]  

  • 60. K63-linked ubiquitination and neurodegeneration.
    Lim KL; Lim GG
    Neurobiol Dis; 2011 Jul; 43(1):9-16. PubMed ID: 20696248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.