BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 22188772)

  • 1. Mechanism of increased respiration in an H+-ATPase-defective mutant of Corynebacterium glutamicum.
    Sawada K; Kato Y; Imai K; Li L; Wada M; Matsushita K; Yokota A
    J Biosci Bioeng; 2012 Apr; 113(4):467-73. PubMed ID: 22188772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative proteomic approach to understand the adaptations of an H+ -ATPase-defective mutant of Corynebacterium glutamicum ATCC14067 to energy deficiencies.
    Li L; Wada M; Yokota A
    Proteomics; 2007 Sep; 7(18):3348-57. PubMed ID: 17849411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced glutamic acid production by a H+-ATPase-defective mutant of Corynebacterium glutamicum.
    Aoki R; Wada M; Takesue N; Tanaka K; Yokota A
    Biosci Biotechnol Biochem; 2005 Aug; 69(8):1466-72. PubMed ID: 16116273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of NADH dehydrogenase-disruption and over-expression on respiration-related metabolism in Corynebacterium glutamicum KY9714.
    Nantapong N; Kugimiya Y; Toyama H; Adachi O; Matsushita K
    Appl Microbiol Biotechnol; 2004 Dec; 66(2):187-93. PubMed ID: 15558275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced valine production in Corynebacterium glutamicum with defective H+-ATPase and C-terminal truncated acetohydroxyacid synthase.
    Wada M; Hijikata N; Aoki R; Takesue N; Yokota A
    Biosci Biotechnol Biochem; 2008 Nov; 72(11):2959-65. PubMed ID: 18997402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The respiratory chain of Corynebacterium glutamicum.
    Bott M; Niebisch A
    J Biotechnol; 2003 Sep; 104(1-3):129-53. PubMed ID: 12948635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiology and global gene expression of a Corynebacterium glutamicum ΔF(1)F(O)-ATP synthase mutant devoid of oxidative phosphorylation.
    Koch-Koerfges A; Kabus A; Ochrombel I; Marin K; Bott M
    Biochim Biophys Acta; 2012 Feb; 1817(2):370-80. PubMed ID: 22050934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of Corynebacterium glutamicum from an aerobic respiring to an aerobic fermenting bacterium by inactivation of the respiratory chain.
    Koch-Koerfges A; Pfelzer N; Platzen L; Oldiges M; Bott M
    Biochim Biophys Acta; 2013 Jun; 1827(6):699-708. PubMed ID: 23416842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced succinic acid production in Corynebacterium glutamicum with increasing the available NADH supply and glucose consumption rate by decreasing H(+)-ATPase activity.
    Xu H; Zhou Z; Wang C; Chen Z; Cai H
    Biotechnol Lett; 2016 Jul; 38(7):1181-6. PubMed ID: 27053082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose consumption rate critically depends on redox state in Corynebacterium glutamicum under oxygen deprivation.
    Tsuge Y; Uematsu K; Yamamoto S; Suda M; Yukawa H; Inui M
    Appl Microbiol Biotechnol; 2015 Jul; 99(13):5573-82. PubMed ID: 25808520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase.
    Komati Reddy G; Lindner SN; Wendisch VF
    Appl Environ Microbiol; 2015 Mar; 81(6):1996-2005. PubMed ID: 25576602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyruvate kinase deletion as an effective phenotype to enhance lysine production in Corynebacterium glutamicum ATCC13032: Redirecting the carbon flow to a precursor metabolite.
    Yanase M; Aikoh T; Sawada K; Ogura K; Hagiwara T; Imai K; Wada M; Yokota A
    J Biosci Bioeng; 2016 Aug; 122(2):160-7. PubMed ID: 26983943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H+-ATPase defect in Corynebacterium glutamicum abolishes glutamic acid production with enhancement of glucose consumption rate.
    Sekine H; Shimada T; Hayashi C; Ishiguro A; Tomita F; Yokota A
    Appl Microbiol Biotechnol; 2001 Nov; 57(4):534-40. PubMed ID: 11762601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of malate:quinone oxidoreductase increases L-lysine production by Corynebacterium glutamicum.
    Mitsuhashi S; Hayashi M; Ohnishi J; Ikeda M
    Biosci Biotechnol Biochem; 2006 Nov; 70(11):2803-6. PubMed ID: 17090916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum.
    Zhou Z; Wang C; Chen Y; Zhang K; Xu H; Cai H; Chen Z
    Biotechnol Prog; 2015; 31(1):12-9. PubMed ID: 25311136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transfer ability from NADH to menaquinone and from NADPH to oxygen of type II NADH dehydrogenase of Corynebacterium glutamicum.
    Nantapong N; Otofuji A; Migita CT; Adachi O; Toyama H; Matsushita K
    Biosci Biotechnol Biochem; 2005 Jan; 69(1):149-59. PubMed ID: 15665480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic characterisation of recombinant Corynebacterium glutamicum NAD+-dependent LDH over-expressed in E. coli and its rescue of an lldD- phenotype in C. glutamicum: the issue of reversibility re-examined.
    Sharkey MA; Maher MA; Guyonvarch A; Engel PC
    Arch Microbiol; 2011 Oct; 193(10):731-40. PubMed ID: 21567176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate.
    Kato O; Youn JW; Stansen KC; Matsui D; Oikawa T; Wendisch VF
    BMC Microbiol; 2010 Dec; 10():321. PubMed ID: 21159175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereospecificity of Corynebacterium glutamicum 2,3-butanediol dehydrogenase and implications for the stereochemical purity of bioproduced 2,3-butanediol.
    Radoš D; Turner DL; Catarino T; Hoffart E; Neves AR; Eikmanns BJ; Blombach B; Santos H
    Appl Microbiol Biotechnol; 2016 Dec; 100(24):10573-10583. PubMed ID: 27687994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.