BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22188920)

  • 41. A microfluidic chip-based fluorescent biosensor for the sensitive and specific detection of label-free single-base mismatch via magnetic beads-based "sandwich" hybridization strategy.
    Wang Z; Fan Y; Chen J; Guo Y; Wu W; He Y; Xu L; Fu F
    Electrophoresis; 2013 Aug; 34(15):2177-84. PubMed ID: 23712850
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Detection of mismatched DNAs via the binding affinity of MutS using a gold nanoparticle-based competitive colorimetric method.
    Cho M; Han MS; Ban C
    Chem Commun (Camb); 2008 Oct; (38):4573-5. PubMed ID: 18815687
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrochemical genosensors for biomedical applications based on gold nanoparticles.
    Castañeda MT; Merkoçi A; Pumera M; Alegret S
    Biosens Bioelectron; 2007 Apr; 22(9-10):1961-7. PubMed ID: 17010599
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of gold nanoparticle and electrode surface properties on electrocatalytic silver deposition for electrochemical DNA hybridization detection.
    Lee TM; Cai H; Hsing IM
    Analyst; 2005 Mar; 130(3):364-9. PubMed ID: 15724166
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Label-free genosensor based on immobilized DNA hairpins on gold surface.
    Huang C; Stakenborg T; Cheng Y; Colle F; Steylaerts T; Jans K; Van Dorpe P; Lagae L
    Biosens Bioelectron; 2011 Mar; 26(7):3121-6. PubMed ID: 21208795
    [TBL] [Abstract][Full Text] [Related]  

  • 46. One-step label-free optical genosensing system for sequence-specific DNA related to the human immunodeficiency virus based on the measurements of light scattering signals of gold nanorods.
    He W; Huang CZ; Li YF; Xie JP; Yang RG; Zhou PF; Wang J
    Anal Chem; 2008 Nov; 80(22):8424-30. PubMed ID: 18937420
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrochemical detection of single-nucleotide mismatches: application of M-DNA.
    Long YT; Li CZ; Sutherland TC; Kraatz HB; Lee JS
    Anal Chem; 2004 Jul; 76(14):4059-65. PubMed ID: 15253643
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A one-step highly sensitive method for DNA detection using dynamic light scattering.
    Dai Q; Liu X; Coutts J; Austin L; Huo Q
    J Am Chem Soc; 2008 Jul; 130(26):8138-9. PubMed ID: 18540598
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single molecule biosensing using color coded plasmon resonant metal nanoparticles.
    Xiao L; Wei L; He Y; Yeung ES
    Anal Chem; 2010 Jul; 82(14):6308-14. PubMed ID: 20568720
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydroxylamine-amplified gold nanoparticles for the naked eye and chemiluminescent detection of sequence-specific DNA with notable potential for single-nucleotide polymorphism discrimination.
    Fan A; Lau C; Lu J
    Analyst; 2009 Mar; 134(3):497-503. PubMed ID: 19238286
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biomolecular detection with a thin membrane transducer.
    Cha M; Shin J; Kim JH; Kim I; Choi J; Lee N; Kim BG; Lee J
    Lab Chip; 2008 Jun; 8(6):932-7. PubMed ID: 18497914
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization.
    Sato K; Hosokawa K; Maeda M
    J Am Chem Soc; 2003 Jul; 125(27):8102-3. PubMed ID: 12837070
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Label-free and homogeneous DNA hybridization detection using gold nanoparticles-based chemiluminescence system.
    Qi Y; Li B; Zhang Z
    Biosens Bioelectron; 2009 Aug; 24(12):3581-6. PubMed ID: 19515550
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conformational switching immobilized hairpin DNA probes following subsequent expanding of gold nanoparticles enables visual detecting sequence-specific DNA.
    Niu Y; Zhao Y; Fan A
    Anal Chem; 2011 Oct; 83(19):7500-6. PubMed ID: 21879720
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gold and silica-coated gold nanoparticles as thermographic labels for DNA detection.
    Cerruti MG; Sauthier M; Leonard D; Liu D; Duscher G; Feldheim DL; Franzen S
    Anal Chem; 2006 May; 78(10):3282-8. PubMed ID: 16689528
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of grafting density and binding efficiency of DNA and proteins on gold surfaces.
    Castelino K; Kannan B; Majumdar A
    Langmuir; 2005 Mar; 21(5):1956-61. PubMed ID: 15723495
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Gold coated ferric oxide nanoparticles based disposable magnetic genosensors for the detection of DNA hybridization processes.
    Loaiza ÓA; Jubete E; Ochoteco E; Cabañero G; Grande H; Rodríguez J
    Biosens Bioelectron; 2011 Jan; 26(5):2194-200. PubMed ID: 20951565
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantitative detection of DNA by autocatalytic enlargement of hybridized gold nanoprobes.
    Zhan Z; Cao C; Sim SJ
    Biosens Bioelectron; 2010 Oct; 26(2):511-6. PubMed ID: 20692143
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mutation detection by electrocatalysis at DNA-modified electrodes.
    Boon EM; Ceres DM; Drummond TG; Hill MG; Barton JK
    Nat Biotechnol; 2000 Oct; 18(10):1096-100. PubMed ID: 11017050
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Surface-enhanced Raman spectroscopy for facile DNA detection using gold nanoparticle aggregates formed via photoligation.
    Thuy NT; Yokogawa R; Yoshimura Y; Fujimoto K; Koyano M; Maenosono S
    Analyst; 2010 Mar; 135(3):595-602. PubMed ID: 20174716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.