These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 22189002)

  • 21. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging.
    Iyer LM; Makarova KS; Koonin EV; Aravind L
    Nucleic Acids Res; 2004; 32(17):5260-79. PubMed ID: 15466593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TrwB: an F(1)-ATPase-like molecular motor involved in DNA transport during bacterial conjugation.
    Cabezon E; de la Cruz F
    Res Microbiol; 2006 May; 157(4):299-305. PubMed ID: 16427770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetics of motor protein translocation on single-stranded DNA.
    Fischer CJ; Wooten L; Tomko EJ; Lohman TM
    Methods Mol Biol; 2010; 587():45-56. PubMed ID: 20225141
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RecA-like motor ATPases--lessons from structures.
    Ye J; Osborne AR; Groll M; Rapoport TA
    Biochim Biophys Acta; 2004 Nov; 1659(1):1-18. PubMed ID: 15511523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonequilibrium phase transitions in the extraction of membrane tubes by molecular motors.
    Tailleur J; Evans MR; Kafri Y
    Phys Rev Lett; 2009 Mar; 102(11):118109. PubMed ID: 19392247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-speed DNA-based rolling motors powered by RNase H.
    Yehl K; Mugler A; Vivek S; Liu Y; Zhang Y; Fan M; Weeks ER; Salaita K
    Nat Nanotechnol; 2016 Feb; 11(2):184-90. PubMed ID: 26619152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oligomeric states of the SecA and SecYEG core components of the bacterial Sec translocon.
    Rusch SL; Kendall DA
    Biochim Biophys Acta; 2007 Jan; 1768(1):5-12. PubMed ID: 17011510
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-molecule studies of nucleic acid motors.
    Seidel R; Dekker C
    Curr Opin Struct Biol; 2007 Feb; 17(1):80-6. PubMed ID: 17207989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploiting molecular motors as nanomachines: the mechanisms of de novo and re-engineered cytoskeletal motors.
    DelRosso NV; Derr ND
    Curr Opin Biotechnol; 2017 Aug; 46():20-26. PubMed ID: 28088100
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering applications of biomolecular motors.
    Hess H
    Annu Rev Biomed Eng; 2011 Aug; 13():429-50. PubMed ID: 21639779
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular motors.
    Schliwa M; Woehlke G
    Nature; 2003 Apr; 422(6933):759-65. PubMed ID: 12700770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical operation and intersubunit coordination of ring-shaped molecular motors: insights from single-molecule studies.
    Liu S; Chistol G; Bustamante C
    Biophys J; 2014 May; 106(9):1844-58. PubMed ID: 24806916
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A bacterial transcription terminator with inefficient molecular motor action but with a robust transcription termination function.
    Kalarickal NC; Ranjan A; Kalyani BS; Wal M; Sen R
    J Mol Biol; 2010 Feb; 395(5):966-82. PubMed ID: 20026069
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sample solution constraints on motor-driven diagnostic nanodevices.
    Korten S; Albet-Torres N; Paderi F; ten Siethoff L; Diez S; Korten T; te Kronnie G; Månsson A
    Lab Chip; 2013 Mar; 13(5):866-76. PubMed ID: 23303341
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coordination and control inside simple biomolecular machines.
    Yu J
    Adv Exp Med Biol; 2014; 805():353-84. PubMed ID: 24446369
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanomotors for Nucleic Acid, Proteins, Pollutants and Cells Detection.
    Baeza A; Vallet-Regí M
    Int J Mol Sci; 2018 May; 19(6):. PubMed ID: 29799489
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Can man-made nanomachines compete with nature biomotors?
    Wang J
    ACS Nano; 2009 Jan; 3(1):4-9. PubMed ID: 19206241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural Dynamics and Mechanochemical Coupling in DNA Gyrase.
    Basu A; Parente AC; Bryant Z
    J Mol Biol; 2016 May; 428(9 Pt B):1833-45. PubMed ID: 27016205
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PcrA helicase, a prototype ATP-driven molecular motor.
    Dittrich M; Schulten K
    Structure; 2006 Sep; 14(9):1345-53. PubMed ID: 16962966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simple models for extracting mechanical work from the ATP hydrolysis cycle.
    Eide JL; Chakraborty AK; Oster GF
    Biophys J; 2006 Jun; 90(12):4281-94. PubMed ID: 16581833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.