BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

704 related articles for article (PubMed ID: 22189060)

  • 1. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights.
    Gordân R; Murphy KF; McCord RP; Zhu C; Vedenko A; Bulyk ML
    Genome Biol; 2011 Dec; 12(12):R125. PubMed ID: 22189060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution DNA-binding specificity analysis of yeast transcription factors.
    Zhu C; Byers KJ; McCord RP; Shi Z; Berger MF; Newburger DE; Saulrieta K; Smith Z; Shah MV; Radhakrishnan M; Philippakis AA; Hu Y; De Masi F; Pacek M; Rolfs A; Murthy T; Labaer J; Bulyk ML
    Genome Res; 2009 Apr; 19(4):556-66. PubMed ID: 19158363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic regions flanking E-box binding sites influence DNA binding specificity of bHLH transcription factors through DNA shape.
    Gordân R; Shen N; Dror I; Zhou T; Horton J; Rohs R; Bulyk ML
    Cell Rep; 2013 Apr; 3(4):1093-104. PubMed ID: 23562153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basic leucine zipper transcription factor Hac1 binds DNA in two distinct modes as revealed by microfluidic analyses.
    Fordyce PM; Pincus D; Kimmig P; Nelson CS; El-Samad H; Walter P; DeRisi JL
    Proc Natl Acad Sci U S A; 2012 Nov; 109(45):E3084-93. PubMed ID: 23054834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinguishing direct versus indirect transcription factor-DNA interactions.
    Gordân R; Hartemink AJ; Bulyk ML
    Genome Res; 2009 Nov; 19(11):2090-100. PubMed ID: 19652015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-DNA-binding cofactors enhance DNA-binding specificity of a transcriptional regulatory complex.
    Siggers T; Duyzend MH; Reddy J; Khan S; Bulyk ML
    Mol Syst Biol; 2011 Dec; 7():555. PubMed ID: 22146299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. YeTFaSCo: a database of evaluated yeast transcription factor sequence specificities.
    de Boer CG; Hughes TR
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D169-79. PubMed ID: 22102575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL; Lloyd JP; Shiu SH
    BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.
    Tsai ZT; Shiu SH; Tsai HK
    PLoS Comput Biol; 2015 Aug; 11(8):e1004418. PubMed ID: 26291518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic identification of non-canonical transcription factor motifs.
    Chumpitaz-Diaz L; Samee MAH; Pollard KS
    BMC Mol Cell Biol; 2021 Aug; 22(1):44. PubMed ID: 34465294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping functional transcription factor networks from gene expression data.
    Haynes BC; Maier EJ; Kramer MH; Wang PI; Brown H; Brent MR
    Genome Res; 2013 Aug; 23(8):1319-28. PubMed ID: 23636944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying combinatorial regulation of transcription factors and binding motifs.
    Kato M; Hata N; Banerjee N; Futcher B; Zhang MQ
    Genome Biol; 2004; 5(8):R56. PubMed ID: 15287978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo motif discovery facilitates identification of interactions between transcription factors in Saccharomyces cerevisiae.
    Chen MJ; Chou LC; Hsieh TT; Lee DD; Liu KW; Yu CY; Oyang YJ; Tsai HK; Chen CY
    Bioinformatics; 2012 Mar; 28(5):701-8. PubMed ID: 22238267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA-dependent formation of transcription factor pairs alters their binding specificity.
    Jolma A; Yin Y; Nitta KR; Dave K; Popov A; Taipale M; Enge M; Kivioja T; Morgunova E; Taipale J
    Nature; 2015 Nov; 527(7578):384-8. PubMed ID: 26550823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription factor-binding k-mer analysis clarifies the cell type dependency of binding specificities and cis-regulatory SNPs in humans.
    Tahara S; Tsuchiya T; Matsumoto H; Ozaki H
    BMC Genomics; 2023 Oct; 24(1):597. PubMed ID: 37805453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The GCN4 bZIP can bind to noncognate gene regulatory sequences.
    Fedorova AV; Chan IS; Shin JA
    Biochim Biophys Acta; 2006 Jul; 1764(7):1252-9. PubMed ID: 16784907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sumoylation of DNA-bound transcription factor Sko1 prevents its association with nontarget promoters.
    Sri Theivakadadcham VS; Bergey BG; Rosonina E
    PLoS Genet; 2019 Feb; 15(2):e1007991. PubMed ID: 30763307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel method to identify the DNA motifs recognized by a defined transcription factor.
    Ji X; Wang L; Nie X; He L; Zang D; Liu Y; Zhang B; Wang Y
    Plant Mol Biol; 2014 Nov; 86(4-5):367-80. PubMed ID: 25108460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conserved role for transcription factor sumoylation in binding-site selection.
    Rosonina E
    Curr Genet; 2019 Dec; 65(6):1307-1312. PubMed ID: 31093693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.