These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 22189386)

  • 1. Understanding nanoparticle assembly: a simulation approach to SERS-active dimers.
    Mark PR; Fabris L
    J Colloid Interface Sci; 2012 Mar; 369(1):134-43. PubMed ID: 22189386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model for reversible nanoparticle assembly in a polymer matrix.
    Rahedi AJ; Douglas JF; Starr FW
    J Chem Phys; 2008 Jan; 128(2):024902. PubMed ID: 18205470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discriminating nanoparticle dimers from higher order aggregates through wavelength-dependent SERS orientational imaging.
    Stranahan SM; Titus EJ; Willets KA
    ACS Nano; 2012 Feb; 6(2):1806-13. PubMed ID: 22273064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo detection of gold-imidazole self-assembly complexes: NIR-SERS signal reporters.
    Souza GR; Levin CS; Hajitou A; Pasqualini R; Arap W; Miller JH
    Anal Chem; 2006 Sep; 78(17):6232-7. PubMed ID: 16944906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-dimensional assemblies of charged nanoparticles in water: A simulation study.
    Richardi J
    J Chem Phys; 2009 Jan; 130(4):044701. PubMed ID: 19191398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface enhanced Raman scattering from layered assemblies of close-packed gold nanoparticles.
    Jung HY; Park YK; Park S; Kim SK
    Anal Chim Acta; 2007 Oct; 602(2):236-43. PubMed ID: 17933609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperbranched polymer-gold nanoparticle assemblies: role of polymer architecture in hybrid assembly formation and SERS activity.
    Dey P; Blakey I; Thurecht KJ; Fredericks PM
    Langmuir; 2014 Mar; 30(8):2249-58. PubMed ID: 24548062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Observation of Interactions between Nanoparticles and Nanoparticle Self-Assembly in Solution.
    Tan SF; Chee SW; Lin G; Mirsaidov U
    Acc Chem Res; 2017 Jun; 50(6):1303-1312. PubMed ID: 28485945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled hyperbranched polymer-gold nanoparticle hybrids: understanding the effect of polymer coverage on assembly size and SERS performance.
    Dey P; Blakey I; Thurecht KJ; Fredericks PM
    Langmuir; 2013 Jan; 29(2):525-33. PubMed ID: 23244573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Au nanoparticle monolayers: preparation, structural conversion and their surface-enhanced Raman scattering effects.
    Wang MH; Hu JW; Li YJ; Yeung ES
    Nanotechnology; 2010 Apr; 21(14):145608. PubMed ID: 20234084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competitive surface-enhanced Raman scattering effects in noble metal nanoparticle-decorated graphene sheets.
    Sun S; Wu P
    Phys Chem Chem Phys; 2011 Dec; 13(47):21116-20. PubMed ID: 22020382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coarse-grained molecular dynamics study of block copolymer/nanoparticle composites under elongational flow.
    Kalra V; Joo YL
    J Chem Phys; 2009 Dec; 131(21):214904. PubMed ID: 19968366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced Raman spectroscopy for facile DNA detection using gold nanoparticle aggregates formed via photoligation.
    Thuy NT; Yokogawa R; Yoshimura Y; Fujimoto K; Koyano M; Maenosono S
    Analyst; 2010 Mar; 135(3):595-602. PubMed ID: 20174716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect.
    Li Y; Chen X; Gu N
    J Phys Chem B; 2008 Dec; 112(51):16647-53. PubMed ID: 19032046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation.
    Zook JM; Rastogi V; Maccuspie RI; Keene AM; Fagan J
    ACS Nano; 2011 Oct; 5(10):8070-9. PubMed ID: 21888410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloidal systems of silver nanoparticles and high-regioregular cationic polythiophene with ionic-liquid-like pendant groups: Optical properties and SERS.
    Kazim S; Pfleger J; Procházka M; Bondarev D; Vohlídal J
    J Colloid Interface Sci; 2011 Feb; 354(2):611-9. PubMed ID: 21147484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of nanoparticle surface charge in surface-enhanced Raman scattering.
    Alvarez-Puebla RA; Arceo E; Goulet PJ; Garrido JJ; Aroca RF
    J Phys Chem B; 2005 Mar; 109(9):3787-92. PubMed ID: 16851426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number Monte Carlo simulation.
    Liu HH; Surawanvijit S; Rallo R; Orkoulas G; Cohen Y
    Environ Sci Technol; 2011 Nov; 45(21):9284-92. PubMed ID: 21916459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanosensors based on viologen functionalized silver nanoparticles: few molecules surface-enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons in interparticle hot spots.
    Guerrini L; Garcia-Ramos JV; Domingo C; Sanchez-Cortes S
    Anal Chem; 2009 Feb; 81(4):1418-25. PubMed ID: 19215145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecularly mediated processing and assembly of nanoparticles: exploring the interparticle interactions and structures.
    Lim SI; Zhong CJ
    Acc Chem Res; 2009 Jun; 42(6):798-808. PubMed ID: 19378982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.