These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 22189426)
1. Contribution of Gamma amino butyric acid (GABA) to salt stress responses of Nicotiana sylvestris CMSII mutant and wild type plants. Akçay N; Bor M; Karabudak T; Ozdemir F; Türkan I J Plant Physiol; 2012 Mar; 169(5):452-8. PubMed ID: 22189426 [TBL] [Abstract][Full Text] [Related]
2. Gamma-aminobutyric acid (GABA) alleviates salt damage in tomato by modulating Na Wu X; Jia Q; Ji S; Gong B; Li J; Lü G; Gao H BMC Plant Biol; 2020 Oct; 20(1):465. PubMed ID: 33036565 [TBL] [Abstract][Full Text] [Related]
3. Resolving the Role of Plant NAD-Glutamate Dehydrogenase: III. Overexpressing Individually or Simultaneously the Two Enzyme Subunits Under Salt Stress Induces Changes in the Leaf Metabolic Profile and Increases Plant Biomass Production. Tercé-Laforgue T; Clément G; Marchi L; Restivo FM; Lea PJ; Hirel B Plant Cell Physiol; 2015 Oct; 56(10):1918-29. PubMed ID: 26251210 [TBL] [Abstract][Full Text] [Related]
4. The impact of GABA in harpin-elicited biotic stress responses in Nicotiana tabaccum. Dimlioğlu G; Daş ZA; Bor M; Özdemir F; Türkan İ J Plant Physiol; 2015 Sep; 188():51-7. PubMed ID: 26432406 [TBL] [Abstract][Full Text] [Related]
5. Enzymatic Conversions of Glutamate and γ-Aminobutyric Acid as Indicators of Plant Stress Response. Eprintsev AT; Selivanova NV; Igamberdiev AU Methods Mol Biol; 2020; 2057():71-78. PubMed ID: 31595471 [TBL] [Abstract][Full Text] [Related]
6. Characterization of γ-aminobutyric acid metabolism and oxidative damage in wheat (Triticum aestivum L.) seedlings under salt and osmotic stress. Al-Quraan NA; Sartawe FA; Qaryouti MM J Plant Physiol; 2013 Jul; 170(11):1003-9. PubMed ID: 23602379 [TBL] [Abstract][Full Text] [Related]
7. The mitochondrial CMSII mutation of Nicotiana sylvestris impairs adjustment of photosynthetic carbon assimilation to higher growth irradiance. Priault P; Fresneau C; Noctor G; De Paepe R; Cornic G; Streb P J Exp Bot; 2006; 57(9):2075-85. PubMed ID: 16714313 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of high-salinity-induced biosynthesis of γ-aminobutyric acid improves salt-stress tolerance in a glutamic acid-overproducing mutant of an ectoine-deficient Zou Z; Kaothien-Nakayama P; Ogawa-Iwamura J; Nakayama H Appl Environ Microbiol; 2024 Jan; 90(1):e0190523. PubMed ID: 38112419 [TBL] [Abstract][Full Text] [Related]
9. Responses of GABA shunt coupled with carbon and nitrogen metabolism in poplar under NaCl and CdCl Ji J; Shi Z; Xie T; Zhang X; Chen W; Du C; Sun J; Yue J; Zhao X; Jiang Z; Shi S Ecotoxicol Environ Saf; 2020 Apr; 193():110322. PubMed ID: 32109582 [TBL] [Abstract][Full Text] [Related]
10. The lack of mitochondrial complex I in a CMSII mutant of Nicotiana sylvestris increases photorespiration through an increased internal resistance to CO2 diffusion. Priault P; Tcherkez G; Cornic G; De Paepe R; Naik R; Ghashghaie J; Streb P J Exp Bot; 2006; 57(12):3195-207. PubMed ID: 16945981 [TBL] [Abstract][Full Text] [Related]
11. Targeting the NAD7 subunit to mitochondria restores a functional complex I and a wild type phenotype in the Nicotiana sylvestris CMS II mutant lacking nad7. Pineau B; Mathieu C; Gérard-Hirne C; De Paepe R; Chétrit P J Biol Chem; 2005 Jul; 280(28):25994-6001. PubMed ID: 15849190 [TBL] [Abstract][Full Text] [Related]
12. Effects of drought stress and subsequent rewatering on photosynthetic and respiratory pathways in Nicotiana sylvestris wild type and the mitochondrial complex I-deficient CMSII mutant. Galle A; Florez-Sarasa I; Thameur A; de Paepe R; Flexas J; Ribas-Carbo M J Exp Bot; 2010 Mar; 61(3):765-75. PubMed ID: 19933320 [TBL] [Abstract][Full Text] [Related]
13. The dominant glutamic acid metabolic flux to produce γ-amino butyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity. Liu C; Zhao L; Yu G J Integr Plant Biol; 2011 Aug; 53(8):608-18. PubMed ID: 21564543 [TBL] [Abstract][Full Text] [Related]
14. Mitochondrial respiratory pathways modulate nitrate sensing and nitrogen-dependent regulation of plant architecture in Nicotiana sylvestris. Pellny TK; Van Aken O; Dutilleul C; Wolff T; Groten K; Bor M; De Paepe R; Reyss A; Van Breusegem F; Noctor G; Foyer CH Plant J; 2008 Jun; 54(6):976-92. PubMed ID: 18318685 [TBL] [Abstract][Full Text] [Related]
15. Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. Baum G; Lev-Yadun S; Fridmann Y; Arazi T; Katsnelson H; Zik M; Fromm H EMBO J; 1996 Jun; 15(12):2988-96. PubMed ID: 8670800 [TBL] [Abstract][Full Text] [Related]
16. Exogenous γ-aminobutyric acid (GABA) improves salt-inhibited nitrogen metabolism and the anaplerotic reaction of the tricarboxylic acid cycle by regulating GABA-shunt metabolism in maize seedlings. Wang Y; Cao H; Wang S; Guo J; Dou H; Qiao J; Yang Q; Shao R; Wang H Ecotoxicol Environ Saf; 2023 Apr; 254():114756. PubMed ID: 36924595 [TBL] [Abstract][Full Text] [Related]
17. TaPUB1, a Putative E3 Ligase Gene from Wheat, Enhances Salt Stress Tolerance in Transgenic Nicotiana benthamiana. Zhang M; Zhang GQ; Kang HH; Zhou SM; Wang W Plant Cell Physiol; 2017 Oct; 58(10):1673-1688. PubMed ID: 29016965 [TBL] [Abstract][Full Text] [Related]
18. Title: Enhanced salt tolerance and photosynthetic performance: Implication of ɤ-amino butyric acid application in salt-exposed lettuce (Lactuca sativa L.) plants. Kalhor MS; Aliniaeifard S; Seif M; Asayesh EJ; Bernard F; Hassani B; Li T Plant Physiol Biochem; 2018 Sep; 130():157-172. PubMed ID: 29990769 [TBL] [Abstract][Full Text] [Related]
19. Day and Night Fluctuations in GABA Biosynthesis Contribute to Drought Responses in Pelvan A; Bor M; Yolcu S; Özdemir F; Türkan I Plant Signal Behav; 2021 May; 16(5):1899672. PubMed ID: 33704006 [TBL] [Abstract][Full Text] [Related]
20. Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic performance in photorespiratory conditions and during transients. Dutilleul C; Driscoll S; Cornic G; De Paepe R; Foyer CH; Noctor G Plant Physiol; 2003 Jan; 131(1):264-75. PubMed ID: 12529534 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]