These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22189764)

  • 1. Mechanisms underlying rhythmic locomotion: interactions between activation, tension and body curvature waves.
    Chen J; Friesen WO; Iwasaki T
    J Exp Biol; 2012 Jan; 215(Pt 2):211-9. PubMed ID: 22189764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms underlying rhythmic locomotion: body-fluid interaction in undulatory swimming.
    Chen J; Friesen WO; Iwasaki T
    J Exp Biol; 2011 Feb; 214(Pt 4):561-74. PubMed ID: 21270304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms underlying rhythmic locomotion: dynamics of muscle activation.
    Chen J; Tian J; Iwasaki T; Friesen WO
    J Exp Biol; 2011 Jun; 214(Pt 11):1955-64. PubMed ID: 21562183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle function in animal movement: passive mechanical properties of leech muscle.
    Tian J; Iwasaki T; Friesen WO
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Dec; 193(12):1205-19. PubMed ID: 17987298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.
    Shelton RM; Thornycroft PJ; Lauder GV
    J Exp Biol; 2014 Jun; 217(Pt 12):2110-20. PubMed ID: 24625649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Swimming of larval zebrafish: ontogeny of body waves and implications for locomotory development.
    Müller UK; van Leeuwen JL
    J Exp Biol; 2004 Feb; 207(Pt 5):853-68. PubMed ID: 14747416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory modification of leech swimming: rhythmic activity of ventral stretch receptors can change intersegmental phase relationships.
    Cang J; Friesen WO
    J Neurosci; 2000 Oct; 20(20):7822-9. PubMed ID: 11027247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical insights into optimality and resonance in fish swimming.
    Kohannim S; Iwasaki T
    J R Soc Interface; 2014 Mar; 11(92):20131073. PubMed ID: 24430125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A consistent muscle activation strategy underlies crawling and swimming in Caenorhabditis elegans.
    Butler VJ; Branicky R; Yemini E; Liewald JF; Gottschalk A; Kerr RA; Chklovskii DB; Schafer WR
    J R Soc Interface; 2015 Jan; 12(102):20140963. PubMed ID: 25551155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intersegmental coordination of the leech swimming rhythm. II. Comparison of long and short chains of ganglia.
    Pearce RA; Friesen WO
    J Neurophysiol; 1985 Dec; 54(6):1460-72. PubMed ID: 4087043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal control of leech swimming.
    Brodfuehrer PD; Debski EA; O'Gara BA; Friesen WO
    J Neurobiol; 1995 Jul; 27(3):403-18. PubMed ID: 7673898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model.
    Jusufi A; Vogt DM; Wood RJ; Lauder GV
    Soft Robot; 2017 Sep; 4(3):202-210. PubMed ID: 29182079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping motor neurone activity to overt behaviour in the leech: internal pressures produced during locomotion.
    Wilson RJ; Skierczynski BA; Blackwood S; Skalak R; Kristan WB
    J Exp Biol; 1996 Jun; 199(Pt 6):1415-28. PubMed ID: 8691115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear muscles, passive viscoelasticity and body taper conspire to create neuromechanical phase lags in anguilliform swimmers.
    McMillen T; Williams T; Holmes P
    PLoS Comput Biol; 2008 Aug; 4(8):e1000157. PubMed ID: 18769734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromuscular control of anguilliform locomotion: patterns of red and white muscle activity during swimming in the american eel anguilla rostrata.
    Gillis GB
    J Exp Biol; 1998 Dec; 201 (Pt 23)():3245-56. PubMed ID: 9808837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D computational models explain muscle activation patterns and energetic functions of internal structures in fish swimming.
    Ming T; Jin B; Song J; Luo H; Du R; Ding Y
    PLoS Comput Biol; 2019 Sep; 15(9):e1006883. PubMed ID: 31487282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuromechanical wave resonance in jellyfish swimming.
    Hoover AP; Xu NW; Gemmell BJ; Colin SP; Costello JH; Dabiri JO; Miller LA
    Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33836589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics of optimal undulatory swimming organisms.
    Tokić G; Yue DKP
    PLoS Comput Biol; 2019 Oct; 15(10):e1007387. PubMed ID: 31671088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental-numerical method for calculating bending moments in swimming fish shows that fish larvae control undulatory swimming with simple actuation.
    Voesenek CJ; Li G; Muijres FT; van Leeuwen JL
    PLoS Biol; 2020 Jul; 18(7):e3000462. PubMed ID: 32697779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory modification of leech swimming: interactions between ventral stretch receptors and swim-related neurons.
    Cang J; Yu X; Friesen WO
    J Comp Physiol A; 2001 Sep; 187(7):569-79. PubMed ID: 11730304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.