These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 22189861)
1. Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Vizoso-Vázquez A; Lamas-Maceiras M; Becerra M; González-Siso MI; Rodríguez-Belmonte E; Cerdán ME Appl Microbiol Biotechnol; 2012 Apr; 94(1):173-84. PubMed ID: 22189861 [TBL] [Abstract][Full Text] [Related]
2. Regulatory factors controlling transcription of Saccharomyces cerevisiae IXR1 by oxygen levels: a model of transcriptional adaptation from aerobiosis to hypoxia implicating ROX1 and IXR1 cross-regulation. Castro-Prego R; Lamas-Maceiras M; Soengas P; Carneiro I; González-Siso I; Cerdán ME Biochem J; 2009 Dec; 425(1):235-43. PubMed ID: 19807692 [TBL] [Abstract][Full Text] [Related]
4. Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron. Jensen LT; Culotta VC J Mol Biol; 2002 Apr; 318(2):251-60. PubMed ID: 12051835 [TBL] [Abstract][Full Text] [Related]
5. At acidic pH, the GPA2-cAMP pathway is necessary to counteract the ORD1-mediated repression of the hypoxic SRP1/TIR1 yeast gene. Bourdineaud JP Yeast; 2001 Jun; 18(9):841-8. PubMed ID: 11427966 [TBL] [Abstract][Full Text] [Related]
6. The role of Yap1p and Skn7p-mediated oxidative stress response in the defence of Saccharomyces cerevisiae against singlet oxygen. Brombacher K; Fischer BB; Rüfenacht K; Eggen RI Yeast; 2006 Jul; 23(10):741-50. PubMed ID: 16862604 [TBL] [Abstract][Full Text] [Related]
7. The adaptive response of anaerobically grown Saccharomyces cerevisiae to hydrogen peroxide is mediated by the Yap1 and Skn7 transcription factors. Beckhouse AG; Grant CM; Rogers PJ; Dawes IW; Higgins VJ FEMS Yeast Res; 2008 Dec; 8(8):1214-22. PubMed ID: 18795957 [TBL] [Abstract][Full Text] [Related]
8. Approaches to the study of Rox1 repression of the hypoxic genes in the yeast Saccharomyces cerevisiae. Zitomer RS; Limbach MP; Rodriguez-Torres AM; Balasubramanian B; Deckert J; Snow PM Methods; 1997 Mar; 11(3):279-88. PubMed ID: 9073571 [TBL] [Abstract][Full Text] [Related]
9. A Rox1-independent hypoxic pathway in yeast. Antagonistic action of the repressor Ord1 and activator Yap1 for hypoxic expression of the SRP1/TIR1 gene. Bourdineaud JP; De Sampaïo G; Lauquin GJ Mol Microbiol; 2000 Nov; 38(4):879-90. PubMed ID: 11115121 [TBL] [Abstract][Full Text] [Related]
10. The ORD1 gene encodes a transcription factor involved in oxygen regulation and is identical to IXR1, a gene that confers cisplatin sensitivity to Saccharomyces cerevisiae. Lambert JR; Bilanchone VW; Cumsky MG Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7345-9. PubMed ID: 8041793 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional regulation of the one-carbon metabolism regulon in Saccharomyces cerevisiae by Bas1p. Subramanian M; Qiao WB; Khanam N; Wilkins O; Der SD; Lalich JD; Bognar AL Mol Microbiol; 2005 Jul; 57(1):53-69. PubMed ID: 15948949 [TBL] [Abstract][Full Text] [Related]
12. Molecular mechanism of the multiple regulation of the Saccharomyces cerevisiae ATF1 gene encoding alcohol acetyltransferase. Fujiwara D; Kobayashi O; Yoshimoto H; Harashima S; Tamai Y Yeast; 1999 Sep; 15(12):1183-97. PubMed ID: 10487921 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional regulation of YML083c under aerobic and anaerobic conditions. Ter Linde JJ; Régnacq M; Steensma HY Yeast; 2003 Apr; 20(5):439-54. PubMed ID: 12673627 [TBL] [Abstract][Full Text] [Related]
14. A microarray-assisted screen for potential Hap1 and Rox1 target genes in Saccharomyces cerevisiae. Ter Linde JJ; Steensma HY Yeast; 2002 Jul; 19(10):825-40. PubMed ID: 12112237 [TBL] [Abstract][Full Text] [Related]
15. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor. Hahn JS; Neef DW; Thiele DJ Mol Microbiol; 2006 Apr; 60(1):240-51. PubMed ID: 16556235 [TBL] [Abstract][Full Text] [Related]
16. Rsf1p is required for an efficient metabolic shift from fermentative to glycerol-based respiratory growth in S. cerevisiae. Roberts GG; Hudson AP Yeast; 2009 Feb; 26(2):95-110. PubMed ID: 19235764 [TBL] [Abstract][Full Text] [Related]
17. Swi/SNF-GCN5-dependent chromatin remodelling determines induced expression of GDH3, one of the paralogous genes responsible for ammonium assimilation and glutamate biosynthesis in Saccharomyces cerevisiae. Avendaño A; Riego L; DeLuna A; Aranda C; Romero G; Ishida C; Vázquez-Acevedo M; Rodarte B; Recillas-Targa F; Valenzuela L; Zonszein S; González A Mol Microbiol; 2005 Jul; 57(1):291-305. PubMed ID: 15948967 [TBL] [Abstract][Full Text] [Related]
18. O2R, a novel regulatory element mediating Rox1p-independent O(2) and unsaturated fatty acid repression of OLE1 in Saccharomyces cerevisiae. Nakagawa Y; Sugioka S; Kaneko Y; Harashima S J Bacteriol; 2001 Jan; 183(2):745-51. PubMed ID: 11133970 [TBL] [Abstract][Full Text] [Related]
19. Dynamical remodeling of the transcriptome during short-term anaerobiosis in Saccharomyces cerevisiae: differential response and role of Msn2 and/or Msn4 and other factors in galactose and glucose media. Lai LC; Kosorukoff AL; Burke PV; Kwast KE Mol Cell Biol; 2005 May; 25(10):4075-91. PubMed ID: 15870279 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide location analysis reveals an important overlap between the targets of the yeast transcriptional regulators Rds2 and Adr1. Soontorngun N; Baramee S; Tangsombatvichit C; Thepnok P; Cheevadhanarak S; Robert F; Turcotte B Biochem Biophys Res Commun; 2012 Jul; 423(4):632-7. PubMed ID: 22687600 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]