These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 22190342)
21. Development of a continuous-flow system for asymmetric hydrogenation using self-supported chiral catalysts. Shi L; Wang X; Sandoval CA; Wang Z; Li H; Wu J; Yu L; Ding K Chemistry; 2009 Sep; 15(38):9855-67. PubMed ID: 19685536 [TBL] [Abstract][Full Text] [Related]
22. Enantioselective Rh-catalyzed hydrogenation of 3-aryl-4-phosphonobutenoates with a P-stereogenic BoPhoz-type ligand. Duan ZC; Hu XP; Zhang C; Zheng Z J Org Chem; 2010 Dec; 75(23):8319-21. PubMed ID: 21062052 [TBL] [Abstract][Full Text] [Related]
23. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Spectroscopic definition of the resting sites and the putative CuIIM-OOH intermediate. Chen P; Bell J; Eipper BA; Solomon EI Biochemistry; 2004 May; 43(19):5735-47. PubMed ID: 15134448 [TBL] [Abstract][Full Text] [Related]
24. Synthesis, characterization, and application of vanadium-salan complexes in oxygen transfer reactions. Adão P; Costa Pessoa J; Henriques RT; Kuznetsov ML; Avecilla F; Maurya MR; Kumar U; Correia I Inorg Chem; 2009 Apr; 48(8):3542-61. PubMed ID: 19290614 [TBL] [Abstract][Full Text] [Related]
25. Stereochemical influence of the ligand on the structure of manganese complexes: implications for catalytic epoxidations. Godbole MD; Hotze AC; Hage R; Mills AM; Kooijman H; Spek AL; Bouwman E Inorg Chem; 2005 Dec; 44(25):9253-66. PubMed ID: 16323907 [TBL] [Abstract][Full Text] [Related]
26. Shaping and enforcing coordination spheres: the implications of C3 and C1 chirality in the coordination chemistry of 1,1,1-tris(oxazolinyl)ethane ("trisox"). Gade LH; Marconi G; Dro C; Ward BD; Poyatos M; Bellemin-Laponnaz S; Wadepohl H; Sorace L; Poneti G Chemistry; 2007; 13(11):3058-75. PubMed ID: 17300108 [TBL] [Abstract][Full Text] [Related]
27. Switching the enantioselectivity in catalytic [4 + 1] cycloadditions by changing the metal center: principles of inverting the stereochemical preference of an asymmetric catalysis revealed by DFT calculations. Mazumder S; Crandell DW; Lord RL; Baik MH J Am Chem Soc; 2014 Jul; 136(26):9414-23. PubMed ID: 24842228 [TBL] [Abstract][Full Text] [Related]
28. The electron-poor phosphines P{C6H3(CF3)2-3,5}3 and P(C6F5)3 do not mimic phosphites as ligands for hydroformylation. A comparison of the coordination chemistry of P{C6H3(CF3)2-3,5}3 and P(C6F5)3 and the unexpectedly low hydroformylation activity of their rhodium complexes. Clarke ML; Ellis D; Mason KL; Orpen AG; Pringle PG; Wingad RL; Zaher DA; Baker RT Dalton Trans; 2005 Apr; (7):1294-300. PubMed ID: 15782267 [TBL] [Abstract][Full Text] [Related]
30. Stitching phospholanes together piece by piece: new modular di- and tridentate stereodirecting ligands. Lloret Fillol J; Kruckenberg A; Scherl P; Wadepohl H; Gade LH Chemistry; 2011 Dec; 17(50):14047-62. PubMed ID: 22068933 [TBL] [Abstract][Full Text] [Related]
31. Asymmetric allylic substitution catalyzed by C1-symmetrical complexes of molybdenum: structural requirements of the ligand and the stereochemical course of the reaction. Malkov AV; Gouriou L; Lloyd-Jones GC; Starý I; Langer V; Spoor P; Vinader V; Kocovský P Chemistry; 2006 Sep; 12(26):6910-29. PubMed ID: 16807930 [TBL] [Abstract][Full Text] [Related]
32. Supramolecular bidentate ligands by metal-directed in situ formation of antiparallel beta-sheet structures and application in asymmetric catalysis. Laungani AC; Slattery JM; Krossing I; Breit B Chemistry; 2008; 14(15):4488-502. PubMed ID: 18449870 [TBL] [Abstract][Full Text] [Related]
33. Coordination studies on supramolecular chiral ligands and application in asymmetric hydroformylation. Bellini R; Reek JN Chemistry; 2012 Jun; 18(23):7091-9. PubMed ID: 22532382 [TBL] [Abstract][Full Text] [Related]
34. Predicting the enantioselectivity of the copper-catalysed cyclopropanation of alkenes by using quantitative quadrant-diagram representations of the catalysts. Aguado-Ullate S; Urbano-Cuadrado M; Villalba I; Pires E; García JI; Bo C; Carbó JJ Chemistry; 2012 Oct; 18(44):14026-36. PubMed ID: 22987760 [TBL] [Abstract][Full Text] [Related]
36. Hydrogen bonding makes a difference in the rhodium-catalyzed enantioselective hydrogenation using monodentate phosphoramidites. Liu Y; Sandoval CA; Yamaguchi Y; Zhang X; Wang Z; Kato K; Ding K J Am Chem Soc; 2006 Nov; 128(44):14212-3. PubMed ID: 17076467 [TBL] [Abstract][Full Text] [Related]
37. Differential DNA recognition by the enantiomers of 1-Rh(MGP)2 phi: a combination of shape selection and direct readout. Franklin SJ; Barton JK Biochemistry; 1998 Nov; 37(46):16093-105. PubMed ID: 9819202 [TBL] [Abstract][Full Text] [Related]
38. Biaryl phosphites: new efficient adaptative ligands for Pd-catalyzed asymmetric allylic substitution reactions. Diéguez M; Pàmies O Acc Chem Res; 2010 Feb; 43(2):312-22. PubMed ID: 19886655 [TBL] [Abstract][Full Text] [Related]
39. Isotope effects and the nature of selectivity in rhodium-catalyzed cyclopropanations. Nowlan DT; Gregg TM; Davies HM; Singleton DA J Am Chem Soc; 2003 Dec; 125(51):15902-11. PubMed ID: 14677982 [TBL] [Abstract][Full Text] [Related]
40. Application of a new amidophosphite ligand to Rh-catalyzed asymmetric hydrogenation of β-dehydroamino acid derivatives in supercritical carbon dioxide: activation effect of protic Co-solvents. Lyubimov SE; Rastorguev EA; Davankov VA Chirality; 2011 Sep; 23(8):624-7. PubMed ID: 21766342 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]