BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 22190492)

  • 41. Epidermal growth factor and betacellulin mediate signal transduction through co-expressed ErbB2 and ErbB3 receptors.
    Alimandi M; Wang LM; Bottaro D; Lee CC; Kuo A; Frankel M; Fedi P; Tang C; Lippman M; Pierce JH
    EMBO J; 1997 Sep; 16(18):5608-17. PubMed ID: 9312020
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Allosteric regulation of epidermal growth factor (EGF) receptor ligand binding by tyrosine kinase inhibitors.
    Macdonald-Obermann JL; Pike LJ
    J Biol Chem; 2018 Aug; 293(35):13401-13414. PubMed ID: 29997256
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Epidermal growth factor receptors containing a single tyrosine in their C-terminal tail bind different effector molecules and are signaling-competent.
    Gill K; Macdonald-Obermann JL; Pike LJ
    J Biol Chem; 2017 Dec; 292(50):20744-20755. PubMed ID: 29074618
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An incomplete program of cellular tyrosine phosphorylations induced by kinase-defective epidermal growth factor receptors.
    Wright JD; Reuter CW; Weber MJ
    J Biol Chem; 1995 May; 270(20):12085-93. PubMed ID: 7538132
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Combined inhibition of epidermal growth factor receptor and JAK/STAT pathways results in greater growth inhibition in vitro than single agent therapy.
    Dowlati A; Nethery D; Kern JA
    Mol Cancer Ther; 2004 Apr; 3(4):459-63. PubMed ID: 15078989
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Epidermal growth factor and estrogen act by independent pathways to additively promote the release of the angiogenic chemokine CXCL8 by breast tumor cells.
    Haim K; Weitzenfeld P; Meshel T; Ben-Baruch A
    Neoplasia; 2011 Mar; 13(3):230-43. PubMed ID: 21390186
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prolonged EGFR signaling by ERBB2-mediated sequestration at the plasma membrane.
    Offterdinger M; Bastiaens PI
    Traffic; 2008 Jan; 9(1):147-55. PubMed ID: 17956594
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Targeting the dimerization of epidermal growth factor receptors with small-molecule inhibitors.
    Yang RY; Yang KS; Pike LJ; Marshall GR
    Chem Biol Drug Des; 2010 Jul; 76(1):1-9. PubMed ID: 20456371
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ERBB3 (HER3) is a key sensor in the regulation of ERBB-mediated signaling in both low and high ERBB2 (HER2) expressing cancer cells.
    Choi BK; Fan X; Deng H; Zhang N; An Z
    Cancer Med; 2012 Aug; 1(1):28-38. PubMed ID: 23342251
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bipartite tetracysteine display reveals allosteric control of ligand-specific EGFR activation.
    Scheck RA; Lowder MA; Appelbaum JS; Schepartz A
    ACS Chem Biol; 2012 Aug; 7(8):1367-76. PubMed ID: 22667988
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities.
    Couet J; Sargiacomo M; Lisanti MP
    J Biol Chem; 1997 Nov; 272(48):30429-38. PubMed ID: 9374534
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differential activation of ErbB receptors in the rat olfactory mucosa by transforming growth factor-alpha and epidermal growth factor in vivo.
    Ezeh PI; Farbman AI
    J Neurobiol; 1998 Nov; 37(2):199-210. PubMed ID: 9805267
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Epidermal growth factor contains both positive and negative determinants for interaction with ErbB-2/ErbB-3 heterodimers.
    Stortelers C; van De Poll ML; Lenferink AE; Gadellaa MM; van Zoelen C; van Zoelen EJ
    Biochemistry; 2002 Apr; 41(13):4292-301. PubMed ID: 11914075
    [TBL] [Abstract][Full Text] [Related]  

  • 54. EGF receptor exposed to oxidative stress acquires abnormal phosphorylation and aberrant activated conformation that impairs canonical dimerization.
    Filosto S; Khan EM; Tognon E; Becker C; Ashfaq M; Ravid T; Goldkorn T
    PLoS One; 2011; 6(8):e23240. PubMed ID: 21853092
    [TBL] [Abstract][Full Text] [Related]  

  • 55. EGFR forms ligand-independent oligomers that are distinct from the active state.
    Byrne PO; Hristova K; Leahy DJ
    J Biol Chem; 2020 Sep; 295(38):13353-13362. PubMed ID: 32727847
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Activation of EGFR/ERBB2 via pathways involving ERK1/2, P38 MAPK, AKT and FOXO enhances recovery of diabetic hearts from ischemia-reperfusion injury.
    Akhtar S; Yousif MH; Chandrasekhar B; Benter IF
    PLoS One; 2012; 7(6):e39066. PubMed ID: 22720029
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The tethering arm of the EGF receptor is required for negative cooperativity and signal transduction.
    Adak S; DeAndrade D; Pike LJ
    J Biol Chem; 2011 Jan; 286(2):1545-55. PubMed ID: 21047778
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The ErbB/HER family of protein-tyrosine kinases and cancer.
    Roskoski R
    Pharmacol Res; 2014 Jan; 79():34-74. PubMed ID: 24269963
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of threonine residues in regulation of the epidermal growth factor receptor by protein kinase C and mitogen-activated protein kinase.
    Morrison P; Takishima K; Rosner MR
    J Biol Chem; 1993 Jul; 268(21):15536-43. PubMed ID: 8393447
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Her2 activation mechanism reflects evolutionary preservation of asymmetric ectodomain dimers in the human EGFR family.
    Arkhipov A; Shan Y; Kim ET; Dror RO; Shaw DE
    Elife; 2013 Jul; 2():e00708. PubMed ID: 23878723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.