These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 22190692)

  • 21. Comprehensive large-scale assessment of intrinsic protein disorder.
    Walsh I; Giollo M; Di Domenico T; Ferrari C; Zimmermann O; Tosatto SC
    Bioinformatics; 2015 Jan; 31(2):201-8. PubMed ID: 25246432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PROFcon: novel prediction of long-range contacts.
    Punta M; Rost B
    Bioinformatics; 2005 Jul; 21(13):2960-8. PubMed ID: 15890748
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of disorder predictions in CASP9.
    Monastyrskyy B; Fidelis K; Moult J; Tramontano A; Kryshtafovych A
    Proteins; 2011; 79 Suppl 10(S10):107-18. PubMed ID: 21928402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RAPID: fast and accurate sequence-based prediction of intrinsic disorder content on proteomic scale.
    Yan J; Mizianty MJ; Filipow PL; Uversky VN; Kurgan L
    Biochim Biophys Acta; 2013 Aug; 1834(8):1671-80. PubMed ID: 23732563
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins.
    Yang ZR; Thomson R; McNeil P; Esnouf RM
    Bioinformatics; 2005 Aug; 21(16):3369-76. PubMed ID: 15947016
    [TBL] [Abstract][Full Text] [Related]  

  • 26. fDETECT webserver: fast predictor of propensity for protein production, purification, and crystallization.
    Meng F; Wang C; Kurgan L
    BMC Bioinformatics; 2018 Jan; 18(1):580. PubMed ID: 29295714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep learning in prediction of intrinsic disorder in proteins.
    Zhao B; Kurgan L
    Comput Struct Biotechnol J; 2022; 20():1286-1294. PubMed ID: 35356546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MetaDisorder: a meta-server for the prediction of intrinsic disorder in proteins.
    Kozlowski LP; Bujnicki JM
    BMC Bioinformatics; 2012 May; 13():111. PubMed ID: 22624656
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A neural network method for prediction of beta-turn types in proteins using evolutionary information.
    Kaur H; Raghava GP
    Bioinformatics; 2004 Nov; 20(16):2751-8. PubMed ID: 15145798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-scale prediction of proteins with long intrinsically disordered regions.
    Peng Z; Mizianty MJ; Kurgan L
    Proteins; 2014 Jan; 82(1):145-58. PubMed ID: 23798504
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intrinsic disorder and functional proteomics.
    Radivojac P; Iakoucheva LM; Oldfield CJ; Obradovic Z; Uversky VN; Dunker AK
    Biophys J; 2007 Mar; 92(5):1439-56. PubMed ID: 17158572
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An ensemble micro neural network approach for elucidating interactions between zinc finger proteins and their target DNA.
    Dutta S; Madan S; Parikh H; Sundar D
    BMC Genomics; 2016 Dec; 17(Suppl 13):1033. PubMed ID: 28155662
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Porter: a new, accurate server for protein secondary structure prediction.
    Pollastri G; McLysaght A
    Bioinformatics; 2005 Apr; 21(8):1719-20. PubMed ID: 15585524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pcons5: combining consensus, structural evaluation and fold recognition scores.
    Wallner B; Elofsson A
    Bioinformatics; 2005 Dec; 21(23):4248-54. PubMed ID: 16204344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate prediction of solvent accessibility using neural networks-based regression.
    Adamczak R; Porollo A; Meller J
    Proteins; 2004 Sep; 56(4):753-67. PubMed ID: 15281128
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disulfide connectivity prediction using recursive neural networks and evolutionary information.
    Vullo A; Frasconi P
    Bioinformatics; 2004 Mar; 20(5):653-9. PubMed ID: 15033872
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach.
    Wang Z; Yang Q; Li T; Cong P
    PLoS One; 2015; 10(6):e0128334. PubMed ID: 26090958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast and Accurate Accessible Surface Area Prediction Without a Sequence Profile.
    Faraggi E; Kouza M; Zhou Y; Kloczkowski A
    Methods Mol Biol; 2017; 1484():127-136. PubMed ID: 27787824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting intrinsic disorder in proteins: an overview.
    He B; Wang K; Liu Y; Xue B; Uversky VN; Dunker AK
    Cell Res; 2009 Aug; 19(8):929-49. PubMed ID: 19597536
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A neural-network-based method for predicting protein stability changes upon single point mutations.
    Capriotti E; Fariselli P; Casadio R
    Bioinformatics; 2004 Aug; 20 Suppl 1():i63-8. PubMed ID: 15262782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.